![]() 978 63 62 |
![]() |
Сочинения Доклады Контрольные Рефераты Курсовые Дипломы |
РАСПРОДАЖА |
все разделы | раздел: | Промышленность и Производство | подраздел: | Технология |
Архитектура квантовых компьютеров | ![]() найти еще |
![]() Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок |
По нашему же мнению, эта новая теория объясняет лишь одну часть действий нашего разума. Мы привели этот пример рассуждений вокруг создания квантового компьютера, чтобы ещё раз показать, что в решении самых сложных интеллектуальных задач наш мозг зависит от наших чувств и эмоций, и только с их помощью, как в прошлом, он сохранил жизнь человека в суровых природных условиях, так и в будущем, с их помощью, он, возможно, сможет создать искусственный интеллект - квантовый компьютер. 2. КАК ПЕРЕДАЕТСЯ РАЗУМ ОТ ЧЕЛОВЕКА К ЧЕЛОВЕКУ. ПРОДОЛЖАЕТ ЛИ РАЗУМ РАЗВИВАТЬСЯ? БУДУТ ЛИ ЛЮДИ ЕСТЬ ЧЕЛОВЕЧИНУ? СОХРАНИТ ЛИ ЧЕЛОВЕК СВОЙ РАЗУМ? Как формируется разум? Формируется ли он в момент зачатия человека, передается ли от Природы или создается сам по себе, по заданным параметрам? Нет. Основные параметры разума передаются от человека к человеку. В большинстве случаев разум передается через организм женщины. Замечено, что у гениев и талантливых людей не бывает детей гениев или талантливых наследников. Как правило, это обычные люди. Мужчины не передают свои гениальные, талантливые способности детям
Архитектура Один из методов для построения квантового компьютера на ловушках для ионов состоит в связывании ионов общим движением. Цепочка ионов электрически подвешена между двумя рядами электродов. Благодаря тому, что ионы заряжены положительно и отталкиваются друг от друга, любое движение, переданное одному иону лазером, распространяется на всю цепочку. Также лазеры могут изменять пространственную ориентацию ионов, в которой закодированы данные: например, поворачивая ион «вверх», мы передаем ему значение «1», вращая его «вниз», мы передаем «0» (рис.1) Рис.1 Если положение крайнего иона «вверх», лазер «переключает» его и приводит в движение всю цепочку. Другой лазер переключает ион на другом конце цепочки только в том случае, если он находится в движении. Затем другой лазер переключает первый ион (и останавливает движение), если он (ион) двигается. Ионы на обоих концах цепочки связаны и могут образовать логический элемент в квантовых вычислениях. Однако увеличение систем до большего числа ионов, чем 15-20, представляется довольно сложным.
Следует заметить, что как без эмоционально мыслящих людей, так и без неэмоционально мыслящих людей (которых абсолютное большинство) человечество не смогло бы развиваться. Первые в силу эмоциональных озарений дают идеи, делают открытия, изобретают новое, вторые претворяют, и очень талантливо, эти озарения в жизнь. Одни дополняют других, и получается коллективный плодотворный разум. Сегодня идея совмещения эмоционального и логического мышления лежит в основе создания искусственного интеллекта - квантового компьютера. Приведем пример эмоционального и неэмоционального мышления из нашей жизни. В газете МК (18.11.1998) опубликовано интервью с российским политиком Борисом Немцовым. Отвечая на вопрос корреспондента "Что вас больше всего раздражает в людях?", Немцов сказал: "Тупость. Абсолютное непонимание элементарных вещей, нежелание учиться, животное восприятие мира...". Немцов не прав. То, что его раздражает в людях, это не "тупость" и не "абсолютное непонимание элементарных вещей". На самом деле у таких людей отсутствует эмоциональное мышление и они не могут мыслить так, как мыслит Немцов, который, несомненно, творческий человек, обладающий эмоциональным мышлением
Технология “клиент-сервер” применительно к СУБД сводится к разделению системы на две части – приложение-клиент (fro -e d) и сервер базы данных (back-e d). Эта архитектура совмещает лучшие черты обработки данных на мэйнфреймах и технологии “файл-сервер”. От мэйнфреймов технология “клиент-сервер” позаимствовала такие черты, как централизованное администрирование, безопасность, надежность. От технологии “файл-сервер” унаследованы низкая стоимость и возможность распределенной обработки данных, используя ресурсы компьютеров-клиентов. Сейчас графический интерфейс пользователя стал стандартом для систем “клиент-сервер”. Кроме того, архитектура “клиент-сервер” значительно упрощает и ускоряет разработку приложений за счет того, что правила проверки целостности данных находятся на сервере. Неправильно работающее клиентское приложение не может привести к потере или искажению данных. Все эти возможности, ранее свойственные только сложным и дорогостоящим системам, сейчас доступны даже небольшим организациям. Стоимость оборудования, программного обеспечения и обслуживания для персональных компьютеров в десятки раз ниже, чем для мэйнфреймов. Особенности обработки данных в различных архитектурах показаны на рис.1. Рис.1. Обработка данных в различных архитектурах Локальный компьютер Локальное приложение СУБД Данные Архитектура “файл-сервер” Клиент Файл-сервер Сетевое приложение Данные СУБД Клиент пересылка Сетевое приложение данных СУБД Архитектура “клиент-сервер” Сервер БД Клиентское СУБД приложение Данные Клиентское приложение пересылка запросов и результатов 1.4. Серверы баз данных Термин "сервер баз данных" обычно используют для обозначения всей СУБД, основанной на архитектуре "клиент-сервер", включая и серверную, и клиентскую части.
Декогерентность это главное препятствие практической реализации более мощных квантовых компьютеров. РЕЗЮМЕ Законы физики допускают существование компьютеров, способных передать любую физически возможную среду, не используя непрактично больших ресурсов. Таким образом, универсальное вычисление не просто возможно, как этого требовал принцип Тьюринга, оно также является легкообрабатываемым. Квантовые явления могут включать огромное множество параллельных вселенных, а потому, могут не поддаться эффективному моделированию в пределах одной вселенной. Тем не менее, эта жизнестойкая форма универсальности по-прежнему остается в силе, потому что квантовые компьютеры могут эффективно передать любую физически возможную квантовую среду, даже при взаимодействии огромного множества вселенных. Квантовые компьютеры также могут эффективно решать определенные математические задачи, например, разложение на множители, которые с классических позиций являются труднообрабатываемыми, а также осуществлять классически невозможные разновидности криптографии
Однако классические законы перестают работать при размерах объектов меньше 0,5 мкм(1 микрометр = 10-6 метра). При уменьшении микронных изделий в 1000 раз вступают в действие законы квантовой физики, поскольку происходит переход от сплошных веществ к атомно-молекулярным структурам(9. с. 267-272). В 1974г. японский исследователь Танигучи предложил термин нанотехнология для описания процессов, происходящих в пространстве с линейными размерами от 0,1 до 100 нм(1 нанометр = 10-9 метра). Практическая же нанотехнология родилась в 1981г. с созданием сканирующего туннельного микроскопа. Немецкий ученый Г.К.Бинниг и швейцарский физик Г.Рорер за это изобретение были удостоены Нобелевской премии за 1986г. С помощью этого микроскопа можно перемещать отдельные атомы и молекулярные фрагменты в заранее определенные места. Переход к нанотехнологии означает новую промышленную революцию. Огромные перспективы сулит ее использование в таких областях, как вычислительная техника(наноразмерные квантовые компьютеры), информатика(модули памяти, способные хранить триллионы битов информации в объеме вещества с булавочную головку), коммуникационные линии, производство промышленных роботов, биотехнология, медицина, космические разработки.
МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РФ АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ кафедра теоретической физики РЕФЕРАТ на тему: «Квантовые компьютеры» Выполнил: студент 154 группы ФМФ Безниско Евгений. Руководитель: к.ф.-м.н., доцент Джалмухамбетов А.У. Астрахань – 2000 г. Предпосылки создания квантовых компьютеров. Уже сейчас существует множество систем, в работе которых квантовые эффекты играют существенную роль. Одним из наиболее известных примеров может служить лазер: поле его излучения порождается квантово-механическими событиями - спонтанным и индуцированным излучением света. Другим важным примером таких систем являются современные микросхемы - непрерывное ужесточение проектных норм приводит к тому, что квантовые эффекты начинают играть в их поведении существенную роль. В диодах Ганна возникают осцилляции электронных токов, в полупроводниках образуются слоистые структуры: электроны или дырки в различных запертых состояниях могут хранить информацию, а один или несколько электронов могут быть заперты в так называемых квантовых ямах.
Субквантовая чехарда Л. И. Верховский Мы способны увидеть только то, что однажды уже где-то видели. Ф. Пешоа Сфинкс современной физики В двадцатые годы XX века произошла научная революция — возникла квантовая механика. Ее главная особенность — в корпускулярно-волновом дуализме и связанных с ним принципах неопределенности и дополнительности. Отмечая двойственность и таинственность теории квантов, немецкий физик Теодор Калуца назвал ее «сфинксом современной физики». Одни из создателей новой механики полагали, что она уже обрела свой окончательный вид, другие — что это лишь предварительная теория. Дебаты начались на Пятом Сольвеевском конгрессе в Брюсселе (октябрь 1927 года), где Нильс Бор изложил основные положения так называемой «копенгагенской» интерпретации, а Альберт Эйнштейн высказал свои возражения. С тех пор дискуссия не утихает, более того, сейчас, спустя восемьдесят лет, она оживилась; так, острая полемика развернулась недавно на страницах «Успехов физических наук». Ее стимулируют опыты, которые позволяют исследовать возможность «квантовой телепортации» (мгновенной передачи информации), а также попытки создания квантовых компьютеров.
Причем, точность определения этой константы зависит лишь от числа проводимых опытов. В последнее время все больше становится понятным, что математические вычисления а, следовательно, и любые логические суждения, это всегда некий физический процесс на квантовом уровне. На указанное пытался обратить внимание научного мира еще в 1960г. американский физик Р.Ландауэр. К сожалению, в то время среди ученых господствовал взгляд на вычисления как на некоторую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам. На эквивалентности математических суждений и физических процессов основывается идея создания в недалеком будущем, так называемого квантового компьютера, отличить который от «живого» мозга будет еще труднее (практически не возможно) чем для существующих компьютеров. Имеется в виду, – установить отличие при интерактивном, а не визуальном, общении человека с компьютером. В последнее время произошли существенные подвижки во взглядах на естествознание вообще, и на математику – в частности.
Что касается 256-битных ключей, то если предположить, что затраты на анализ одного ключа равны энергии перехода электрона с одной орбиты атома на другую, то количества великодушно предоставляемой Солнцем энергии недостаточно для осуществления такого перебора за разумное время. Некоторые легко манипулируют количеством битов, легко относя 20 бит на использование сверхпроводников или оптических элементов, 20 других на применение суперэффективных алгоритмов, и 30 последних потому что "это уже немного" (да, просто помножим на 1 миллиард, это действительно "немного"). Напомню, что число битов экспоненциально. Это означает, что затраты на перебор каждых битов пропорциональны 2^ . Чтобы это было легче представить, напомним, что: 64 бита: 18446744073709551616 возможных ключей 128 бит: 340282366920938463463374607431768211456 возможных ключей 256 бит: возможных ключей 4.2. SA/DS /другие обладают квантовыми компьютерами. Очень маловероятно. Если это правда, то технологические достижения опережают всех как минимум лет на 10.
Разработка RISC-процессора является попыткой отойти от эволюционного развития ЦП с постепенным усложнением системы команд. Несколько исследовательских организаций и университетов попытались разработать ЦП с намного меньшим числом команд, что обеспечивает зна чительное повышение его производительности. Важнейшие особенности " чистого " RISC-процессора заключаются в однотактной работе (многочисленные обращения к памяти не предусматриваются) и аппаратном управлении (выполнение команд опирается на быстро действующие схемы, а не на микрокод в отличие от обычных МП , в которых применяется медлительное управление через табличный микрокод, определяющий операции ЦП в каждой команде). Промышленный выпуск 32-битных RISC-процессоров пока освоили только фирмы I MOS (транспьютер) и ACOR (ARM - ACOR Mashi e). Не исключено, что в архитектурах будущих компьютеров будет преобладать данный подход для обеспечения их более высокой производительности. В 32-битных процессорах 80386, МС8020 и Z80000 используются кэш-память для команд и управление памятью, о которой необходимо сказать несколько слов.
Так материальность компьютера, монитора, виртуального шлема или геймпада не вызывают сомнений, однако уже те несколько десятков миллионов транзисторов, что содержатся в небольшом кристалле современного процессора, для пользователя существуют скорее «виртуально»; наука тем временем бодро рапортует об успехах в дальнейшей миниатюризации и нанотехнологиях, пророчествуя в недалёком будущем о биокомпьютерах, построенных на отдельных молекулах, и квантовых суперкомпьютерах, построенных на электронах. Теоретические парадоксы квантовой физики обретают в этих проектах свою «реальность» (а точнее, виртуальность), обещая вместо дискретного исчисления (0-1) континуальную множественность, вместо темпоральной линейности процессов многомерное их ветвление. На квантовых компьютерах та криптографическая расшифровка, на которую у всех современных вычислительных систем ушло бы время, сопоставимое с возрастом Вселенной, будет достигаться за пренебрежимо малые сроки; это свидетельствует не о возрастающей скорости вычислений, а о принципиально ином подходе, основанном на фундаментальных неопределённостях, своего рода «дырах» в реальности, сквозь которые проглядывает многомерная «виртуальность».
Архитектура современного компьютера на основе элементной базы фирмы I el предусматривает следующие типы устройства: Внутренние; Магистраль; Контроллеры и порты; Внешние устройства. К внутренним устройствам относятся: Тактовый генератор (ТГ); Центральный процессор (ЦП); Сопроцессор (СП); Оперативное запоминающее устройство (ОЗУ); Постоянное запоминающее устройство (ПЗУ); Кэш-память; CMOS-память. Внутренние устройства, магистраль и локальные шины образуют системную (материнскую) плату. Тактовый генератор – устройство, которое непрерывно создает импульсы, согласующие во времени работу различных устройств (импульсы синхронизации). Процессор – является главным элементом компьютера и обеспечивает обработку информации любого типа, а также управление всеми остальными устройствами. Сопроцессор или сопроцессор (СП) – вспомогательный процессор, специализирующийся на операциях какого-либо типа, например, на арифметических или графических. Может отсутствовать, тогда он должен быть или встроен в процессор или имитирован программным путем (эмулирован). Оперативное запоминающее устройство (ОЗУ) – устройство, хранящее информацию только при наличии питания.
Открытость архитектуры компьютеров IBM стала мощным стимулом для поставщиков отдельных компонентов, разработчиков программных продуктов и других участников компьютерного бизнеса. В течение трех лет исчезли почти все конкурирующие стандарты персональных компьютеров. Исключение составили только Apple II и Maci osh фирмы Apple. Все другие фирмы либо обанкротились, либо были переориентированы на выпуск IBM-совместимых машин. В конце концов и сама IBM утратила контроль над архитектурой персональных компьютеров. IBM-PC стал промышленным стандартом de-fac o. Подводя итог рассмотрению истории возникновения ПК, необходимо сказать следующее. На начальных этапах развития вычислительной техники компьютеры использовались исключительно в промышленных целях. Ввиду очень высокой себестоимости их не могли себе позволить обычные люди. Однако потребность в получении и обработке информации была у всех. И как только реализация этой потребности стала возможной (в основном за счет снижения себестоимости процессоров), появились персональные компьютеры.
Вычисления велись параллельно на многих компьютерах в течении семи месяцев 1999 года. Расчеты показывают, что с использованием даже тысячи современных рабочих станций и лучшего из известного на сегодня алгоритмов одно 250-значное число может быть разложено на множители примерно за 800 тысяч лет, а 1000 значное – за 1025 лет. (для сравнения возраст Вселенной ~ 1010 лет.). Поэтому криптографические алгоритмы, подобные RSA, оперирующие достаточно длинными ключами, считались абсолютно надежными и использовались во многих приложениях. Пока не были придуманы квантовые компьютеры. Оказывается, используя законы квантовой механики, можно построить такие компьютеры, для которых задача факторизации не составит большого труда. Согласно оценкам, квантовый компьютер с памятью объемом всего лишь в 10 тысяч квантовых битов способен разложить 1000-значное число на простые множители всего за несколько часов. По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли к выводу о невозможности рассчитать состояние эволюционирующей системы, состоящей всего из десятков взаимодействующих частиц, например молекул метана.
К МК с RISC-процессором относятся МК AVR фирмы A mel, МК PIC16 и PIC17 фирмы Microchip и другие. На первый взгляд, МК с RISC-процессором должны иметь более высокую производительность по сравнению с CISC МК при одной и той же тактовой частоте внутренней магистрали. Однако на практике вопрос о производительности более сложен и неоднозначен. С точки зрения организации процессов выборки и исполнения команды в современных 8-разрядных МК применяется одна из двух уже упоминавшихся архитектур МПС: фон-неймановская (принстонская) или гарвардская. Основное преимущество архитектуры Фон-Неймана – упрощение устройства МПС, так как реализуется обращение только к одной общей памяти. Кроме того, использование единой области памяти позволяло оперативно перераспределять ресурсы между областями программ и данных, что существенно повышало гибкость МПС с точки зрения разработчика программного обеспечения. Размещение стека в общей памяти облегчало доступ к его содержимому. Неслучайно поэтому фон-неймановская архитектура стала основной архитектурой универсальных компьютеров, включая персональные компьютеры.
Вскоре у Al air появились и дисплей, и клавиатура, и добавочная оперативная память, и устройство долговременного хранения информации (сначала на бумажной ленте, а затем на гибких дисках). А в 1976 г. был выпущен первый компьютер фирмы Apple, который представлял собой деревянный ящик с электронными компонентами. Если сравнить его с выпускаемым сейчас iMac, то становится ясным, что со временем изменялась не только производительность, но и улучшался дизайн ПК. Вскоре к производству ПК присоединилась и фирма IBM. В 1981 г. она выпустила первый компьютер IBM PC. Благодаря принципу открытой архитектуры этот компьютер можно было самостоятельно модернизировать и добавлять в него дополнительные устройства, разработанные независимыми производителями. За каких-то полгода IBM продала 50 тыс. машин, а через два года обогнала Apple по объёму продаж. Производительность современных ПК больше, чем у суперкомпьютеров, сделанных десять лет назад. Поэтому через несколько лет обыкновенные персоналки будут работать со скоростью, которой обладают современные суперЭВМ. Кстати, в январе 1999 г. самым быстрым был компьютер SGI ASCI Blue Mou ai .
С точки зрения конечного пользователя, привлекательны следующие черты USB: Простота кабельной системы и подключений. Скрытие подробностей электрического подключения от конечного пользователя. Самоидентифицирующиеся ПУ, автоматическая связь устройств с драйверами и конфигурирование. Возможность динамического подключения и конфигурирования ПУ. С середины 1996 года выпускаются PC со встроенным контроллером USB, реализуемым чипсетом. Уже появились модемы, клавиатуры, сканеры, динамики и другие устройства ввода/вывода с поддержкой USB, а также мониторов с USB-адаптерами - они играют роль концентраторов для подключения других устройств. Структура USB USB обеспечивает одновременный обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Распределение пропускной способности шины между ПУ планируется хостом и реализуется им с помощью посылки маркеров. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств. В архитектуре современных компьютеров все большее значение приобретают внешние шины, служащие для подключения различных устройств.
![]() | 978 63 62 |