![]() 978 63 62 |
![]() |
Сочинения Доклады Контрольные Рефераты Курсовые Дипломы |
![]() |
РАСПРОДАЖА |
все разделы | раздел: | Промышленность и Производство |
Сварка и резание металлов | ![]() найти еще |
![]() Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок |
И происходит это не так медленно, как описывает автор, а очень и очень быстро (скорости-то световые!) за 10-8 10-10 с. Из-за такой кратковременности процесса выделенной световой энергии мощность излучения лазера достигает 109 Вт, то есть мощности крупной электростанции! Вот что значит всем атомам сработать «хором». Излучение лазера имеет не только большую мощность, но и малую расходимость. Вспомните, как луч лазера дошел до Луны почти компактным пучком! Сейчас, кроме кристаллических лазеров, существуют лазеры газовые, а также на жидкостях-красителях. Газовые лазеры в отличие от кристаллических работают не короткими вспышками-импульсами, а непрерывно. Лазеры на красителях могут менять свою частоту (длину волны луча) в довольно широких пределах. Лазер сейчас применяется столь широко, что даже трудно перечислить все его «специальности» от резания, сварки, сверления металлов и камней до хирургических операций, в том числе и на глазе. Пораженный способностью лазера «выжигать» живые ткани, автор для интереса попросил друзей «выжечь» ему кусочек таковой на спине
Расходуемая ею удельная мощность меньше, чем у ламп накаливания. В качестве источников света употребляют также дуговые лампы высокого давления. Зажигание дуги производится разрядом от источника высокого напряжения с помощью третьего электрода. Вследствие высокой температуры дуги ее применяют для сварки и резанья металлов. Автоэлектронные дуги с ртутным катодом применяют для выпрямления переменного электрического тока.
Технологическая документация ). См. также Технология металлов , Химическая технология . О. А. Владимиров, А. А. Пархоменко. Технология металлов Техноло'гия мета'ллов, совокупность приёмов и способов получения и обработки металлических материалов, а также научная дисциплина, охватывающая комплекс указанных вопросов. Понятие «Т. м.» охватывает всё содержание понятия «металлургия» в его широком значении, то есть: подготовку металлических руд и извлечение из них металлов, производство металлических сплавов, термическую обработку , химико-термическую обработку , термомеханическую обработку металлов, обработку металлов давлением (ковку, штамповку, прокатку, волочение и др.); кроме металлургии , Т. м. включает литейное производство , сварку и пайку металлов, обработку металлов со снятием стружки (см. Обработка металлов резанием ) и без снятия стружки (см. Электрофизические и электрохимические методы обработки ), нанесение на металл защитных покрытий. В начале 20 в. Т. м. представляла собой единую прикладную науку, во многом определяющую уровень технического развития; её теоретической основой служили металлография (ныне металловедение ), металлургическая химия и основы теории резания металлов
Расходуемая ею удельная мощность меньше, чем у ламп накаливания. В качестве источников света употребляют также дуговые лампы высокого давления. Зажигание дуги производится разрядом от источника высокого напряжения с помощью третьего электрода. Вследствие высокой температуры дуги ее применяют для сварки и резанья металлов. Автоэлектронные дуги с ртутным катодом применяют для выпрямления переменного электрического тока. 2.2.4. Коронный разряд Разряд, получивший такое название, наблюдается при сравнительно высоких давлениях газов в сильно неоднородном поле. Для получения значительной неоднородности поля электроды должны иметь очень неодинаковую поверхность, то есть, один - очень большую, другой - очень малую. Линии напряженности электрического поля сгущаются по мере приближения к проволоке, а, следовательно, напряженность поля возле проволоки имеет наибольшее значение. Когда она достигает приблизительно 3 106 В/м, между проволокой и цилиндром зажигается разряд и в цепи появляется ток. При этом возле проволоки возникает свечение, имеющее вид оболочки или короны, окружающей проволоку, откуда и произошло название разряда.
Активно участвовал в республиканской, городской и заводской печати, выступая главным образом по вопросам технического прогресса. А потом, когда стал уже директором Ижевского машиностроительного завода, был избран депутатом Верховного Совета СССР, членом Удмуртского обкома ВКП(б), а позже, уже работая на других должностях, избирался членом ЦК КПСС. Из отдела по работе с молодыми специалистами я, тяготея к производству и исследованиям, попросил перевести меня в лабораторию, где занимались проблемой резания металлов. Лабораторией руководил энтузиаст этого дела инженер Николай Александрович Сафонов. Свой опыт и знания он охотно передавал молодежи. Работа в лаборатории велась с размахом, ее результаты признавались не только на нашем, но и на других машиностроительных заводах. Своя металлургия позволяла подбирать или заказывать для лаборатории любой металл, а также любую марку стали для инструментов, которые мы изготовляли сами. Рабочие-станочники оказались такими же умельцами, как и начальник лаборатории, и с ними я быстро подружился, особенно одних со мною лет Митей Ютиным и более старшим по возрасту фрезеровщиком Васей Коротаевым
Графически это изображается наклонной прямой линией, проходящей выше начала координат и отсекающей положительную ординату. Уравнение имеет вид Fx = K1b K2ab, (3) где Fx – сила резания, Н; K1, K2– коэффициенты с размерностью соответственно Н/мм и МПа; a, b – соответственно толщина и ширина срезаемого слоя, мм. Отсюда следует, что сила резания изменяется пропорционально ширине и непропорционально толщине срезаемого слоя. В 1925 г. выходит в свет работа А.Н. Челюскина "Влияние размеров стружки на усилие резания металлов" , которая, по словам автора, является "результатом критической обработки главнейших сочинений, относящихся к вопросу резания металлов на станках, а также собственных изысканий и опытов автора в этой области". А.Н. Челюскин цифрами и графиками подтвердил неодинаковое влияние ширины и толщины срезаемого слоя на силу резания. В 1934 г. М.А. Дешевой в работе "Механическая технология дерева" изложил оригинальную, глубоко разработанную и методично построенную научную теорию резания древесины. Как и И.А. Тиме, он, применяя методы механики в анализе процесса стружкообразования при резании, установил связи между сопротивлением древесины резанию и показателями ее механических свойств.
В результате обработка металла оказывалась малоэффективной. Необходимо было заменить руку рабочего специальным механизмом, а мускульную силу, приводящую станок в движение, более мощным двигателем. Появление водяного колеса привело к повышению производительности труда, оказав при этом мощное революционизирующее действие на развитие техники. А с середины XIV в. водяные приводы стали распространяться в металлообработке. В середине XVI Жак Бессон (умер в 1569 г.) - изобрел токарный станок для нарезки цилиндрических и конических винтов. В начале XVIII века Андрей Константинович Нартов (1693-1756), механик Петра первого, изобретает оригинальный токарно-копировальный и винторезный станок с механизированным суппортом и набором сменных зубчатых колес. Чтобы по-настоящему понять мировое значение этих изобретений, вернемся к эволюции токарного станка. В XVII в. появились токарные станки, в которых обрабатываемое изделие приводилось в движение уже не мускульной силой токаря, а с помощью водяного колеса, но резец, как и раньше, держал в руке токарь. В начале XVIII в. токарные станки все чаще использовали для резания металлов, а не дерева, и поэтому проблема жесткого крепления резца и перемещения его вдоль обрабатываемой поверхности стола весьма актуальной.
Электронизация и автоматизация производства - важнейшие последствия "второй промышленной" или "микроэлектронной" революции в экономике развитых стран. С микроэлектроникой непосредственно связано и развитие комплексной автоматизации, качественно новый этап которой начался после изобретения в 1971 году микропроцессора - микроэлектронного логического устройства, встраиваемого в различные устройства для управления их работой. Микропроцессоры ускорили рост робототехники. Большинство применяемых ныне роботов относится к так называемому первому поколению, и применяются при сварке, резании, прессовке, нанесении покрытий и т.д. Приходящие им на смену роботы второго поколения оборудованы устройствами для распознавания окружающей среды. А роботы-"интеллектуалы" третьего поколения будут "видеть", "чувствовать", "слышать". Ученые и инженеры среди наиболее приоритетных сфер применения роботов называют атомную энергетику, освоение космического пространства, транспорта, торговлю, складское хозяйство, медицинское обслуживание, переработку отходов, освоение богатств океанического дна.
Подрез – дефекты сварного соединения, представляющие собой местные уменьшения толщины основного металла в виде канавок, располагающихся вдоль границ сварного шва. Подрезы относятся к наиболее часто встречающимся наружным дефектам, образующимися, как правило, при сварке угловых швов с излишне высоким напряжением дуги и в случае неточного ведения электрода. Одна из кромок проплавляется более глубоко, металл стекает на горизонтально расположенную деталь и его не хватает для заполнения канавки. В стыковых швах подрезы образуются реже. Обычно при повышенном напряжении дуги и большой скорости сварки образуются двусторонние подрезы. Такие же подрезы образуются и в случае увеличения угла разделки при автоматической сварке. Рис.7. Подрез Причины подреза: 1) Большая сила тока; 2) Неправильное положение электрода и направление дуги. При точечной сварке Непровар – отсутствие или малый диаметр литого ядра. Причины: 1) Падение напряжения в сети; 2) Ввод в контур машины больших магнитных масс; 3) Шунтирование тока через соседние точки или случайные контакты; 4) Большой диаметр контакта электрода; 5) Большое давление; 6) Увеличение толщины свариваемых деталей; 7) Уменьшение времени сварки. Выплеск металла. Причины: 1) Плохая очистка деталей или электродов; 2) Малое давление; 3) Большая сила тока; 4) Большое время сварки. Прожог. Причины: 1) Значительное загрязнение поверхности; 2) Загрязнение поверхности электродов; 3) Снижение давления. Трещины. Причины: 1) Жесткий режим сварки; 2) Несвободное деформирование деталей в приспособлении; 3) Малое ковочное давление.
Для одной из цепей подач определяются Smax и Smi , диапазон регулирования подачи: число ступеней подач Zs и знаменатель геометрического ряда подач: Т.к. в паспорте станка число подач суппортов равно 11, то вместо Zs = Z3 = 18 принимаем Zs = 11 (7 пар передаточных отношений совпадают). Тогда: Определяем теоретический ряд подач: 8. Вспомогательные движения и механизмы. Для станка 1П 365 ускоренная подача суппортов осуществляется от электродвигателя мощностью 1 кВт по следующемукинематическому уравнению: ЗАКЛЮЧЕНИЕ В данной работе был произведен кинематический анализ токарно-револьверного станка 1П 365 и построен график частот оборотов шпинделя и лучевая диаграмма. Так же был произведен расчет инструментов: метчика и фасонного призматического резца, и вычерчены их рабочие чертежи. СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 1. Методическое пособие “Обработка конструкционных материалов, режущие инструменты и станки”. К., КУАИ, 1987. 2. “Общемашиностроительные нормативы режимов резания для технического норматирования работ на металлорежущих станках”, Часть 1. М., Машиностроение, 1974. 3. Петруха П.Г.“Резание конструкционных материалов, режущие инструменты и станки”. М., Машиностроение, 1974. 4. Аршинов В.А., Алексеев Г.А.“Резание металлов и режущий инструмент”. М., Машиностроение, 1976.
Первые экспериментальные и теоретические исследования, выполненные русскими учеными, по своему научному уровню и оригинальности не только были выдающимися достижениями того времени, но даже сохранили свое значение до настоящего времени. Среди них прежде всего заслуживают внимания работы И.А. Тиме, опубликованные в 1870-1877 годах. Тиме И.А. создал схему стружкообразования, учитывающую сдвиговой характер пластической деформации, дал математическое описание этого процесса, в частности вывел формулы для расчета силы резания и усадки стружки. В дальнейшем: а). Зворыкин К.А. вывел основное уравнение процесса стружкообразования, устанавливающее связь между углом сдвига, углом действия и условиями контакта стружки с передней поверхностью. б). Элементы механики процесса резания впервые рассмотрел А.А. Брикс. в). Савиным Н.Н. были выполнены первые исследования влияния охлаждающе-смазочных жидкостей на процесс резания. г). Я.Г. Усачев впервые применил металлографический метод для изучения процесса стружкообразования; он выявил действие нароста на стружкообразование, влияние некоторых условий резания на пластические деформации и температуру резания. д). Комиссия по резанию металлов разработала единую методику экспериментального исследования основных стойкостных и силовых зависимостей при любых схемах резания.
Чтобы избежать прожегов, величину сварочного тока уменьшают также при сварке тонкого металла или первого шва (при разделанных кромках). При сварке толстого металла и последующих слов шва величину тока повышают. При монтаже сборных бетонных конструкций или арматурных каркасов, а также при изготовлении арматурных блоков, когда стальные отверстия нельзя соединять с помощью контакной сварки или стыковой сварочной машины, арматуру сваривают в ручную. В этих случаях используют разнообразные виды соединений; о способе соединения стержней даются указания в рабочих чертежах проекта. Нахлечточные сварные соединения или соединения с накладками с расположением фланоговых швов с одной или двух сторон выролняют обычными приемами: швы наплавляют за один или несколько проходов в зависимости от толщины, т.е. диаметра свариваемых стержней. Такие соединения неэкономичны из-за большого расхода металла и электродов, поэтому они выполняются более эфективными способами сварки, например, ванной или ванно-сковной. 4.2. На всех стадиях производства сварных конструкций должен производиться систематический контроль до сварки, в процессе сварки и после ее окончания.
Тольяттинский филиал Самарского Государственного Педагогического Университета КОНТРОЛЬНАЯ РАБОТАДисциплина: МИСИ. На тему: Исследование температуры в зоне резания при точении на токарном станке. Студент: В.В. Группа: Тз-441 Тольятти - 1999 г. СОДЕРЖАНИЕ 1. ТЕПЛОВЫЕ ЯВЛЕНИЯ ПРИ РЕЗАНИИ МЕТАЛЛОВ. ТЕПЛОТА РЕЗАНИЯ. 2. ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ТЕМПЕРАТУРЫ РЕЗАНИЯ. 3. ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА ТЕМПЕРАТУРУ РЕЗАНИЯ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ. 4. МЕТОДЫ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ РЕЗАНИЯ. 1. ТЕПЛОВЫЕ ЯВЛЕНИЯ ПРИ РЕЗАНИИ МЕТАЛЛОВ. ТЕПЛОТА РЕЗАНИЯ Один из главнейших факторов, определяющих процесс резания, — теплота, образующаяся в результате работы резания. Законы теплообразования объясняют ряд явлений, связанных с нагрузкой резца, его стойкостью, качеством обработанной поверхности. Чтобы правильно использовать режущий инструмент, необходимо знать эти законы. Теплота Q в процессе резания образуется в результате: 1) внутреннего трения между частицами обрабатываемого металла в процессе деформации Qдеф; 2) внешнего трения стружки о переднюю поверхность резца Qп.т. 3) внешнего трения поверхности резания и обработанной поверхности о задние поверхности резца Qз.тр.; 4) отрыва стружки, диспергирования Qдисп (образования новых поверхностей) Предполагая, что механическая работа резания полностью переходит в теплоту, получим где Q— количество теплоты в ккал/мин; R — работа резания в кгс м/мин (R = Рzv); Е — механический эквивалент теплоты (Е = 427 кгс м/ккал).
Микропроцессоры ускорили рост робототехники. Большинство применяемых ныне роботов относится к так называемому первому поколению и применяются при сварке, резании, прессовке, нанесении покрытий и т.д. Приходящие им на смену роботы второго поколения оборудованы устройствами для распознавания окружающей среды. А роботы-"интеллектуалы" третьего поколения будут "видеть", "чувствовать", "слышать". Ученые и инженеры среди наиболее приоритетных сфер применения роботов называют атомную энергетику, освоение космического пространства, транспорта, торговлю, складское хозяйство, медицинское обслуживание, переработку отходов, освоение богатств океанического дна. Основная часть роботов работают на электрической энергии, но увеличение потребления электроэнергии роботами компенсируется снижением энергозатрат во многих энергоемких производственных процессах за счет внедрения более рациональных методов и новых энергосберегающих технологических процессов. Но вернемся к науке. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.
Сборочной единицей могут быть сборочная пара (первичное звено сборочного соединения), сборочный комплекс (часть узла), узел, группа, агрегат, изделие. При нормировании сборочной операции, мы имеем дело не с одной деталью, а с комплектом. Объектом нормирования является сборочная операция, под которой понимается законченная часть технологического процесса, ограниченная работой над одной сборочной единицей на одном рабочем месте. Оперативное время слесарно-сборочной операции содержит основное время на технологический переход и вспомогательное время, включающее в себя такие работы как: «взять инструмент», «поднести его к месту обработки», «отложить инструмент», «возвратное движение инструмента» при опиливании или резании металла. Так как слесарные работы являются преимущественно ручными, и элементы вспомогательной работы тесно переплетаются с основной, нормативы содержат оперативное время на технологический переход. Основными факторами, влияющими на продолжительность выполнения слесарных работ, являются: вид слесарных работ, применяемый инструмент, обрабатываемый материал, форма и размеры обрабатываемой поверхности, требуемая точность обработки, степень удобства выполнения работ, масштаб производства.
Низколегированные инструментальные стали применяют для изготовления режущих инструментов большого сечения, работающих при небольших скоростях резания: ручных сверл, протяжек, разверток, гребенок. Высоколегированные инструментальные стали (ГОСТ 19265—73) содержат большое количество легирующих элементов, образующих в структуре стали химические соединения с углеродом (преимущественно карбиды). Основной легирующий элемент таких сталей — вольфрам. Изделия, изготовленные из высоколегированных инструментальных сталей с большим количеством карбидов, сохраняют высокие твердость, прочность и износостойкость режущей кромки инструмента при температурах 600.620°С в процессе резания металлов с большой скоростью. Такие стали называют быстрорежущими. В состав быстрорежущих сталей входят, % углерод 0,7.0,95; хром 3,1.4,4; вольфрам 8,5.19; ванадий 1. .2,5. Маркируются быстрорежущие стали следующим образом: Р9, Р18, Р12, где буква Р обозначает, что сталь быстрорежущая; цифры 9, 18, 12 показывают среднее содержание вольфрама, предусмотренное стандартом.
Молибден и ванадий в сталях Х12Ф1 и Х12М способствует сохранению мелкого зерна. Обе стали обладают высокой прокаливаемостью. При закалке на первичную твердость сталь Х12Ф1 прокаливается до 150–180 мм, а сталь Х12М – до 200 мм при охлаждении в масле. Недостаток высокохромистых сталей заключается в трудности обработки резанием в отожженном состоянии (НВ 207–269) и снижении механических свойств в случае резко выраженной карбидной неоднородности (крупные скопления карбидов, карбидная сетка, карбидная полосчатость). Меньшей карбидной неоднородностью обладает сталь Х6ВФ, которая применяется для инструментов с высокой механической прочностью и сопротивлением изнашиванию (накатные плашки, накатники для холодного накатывания зубчатых колес и т.д.). Прокаливаемость стали Х6ВФ меньше и не превышает 70–80 мм. Для изготовления штампов сложной формы, пневматического инструмента, гибочных и вытяжных штампов, ножей для резания металлов, пуансонов и обжимных матриц, зубил и другого инструмента, испытывающего в работе ударные нагрузки, применяют доэвтектоидные стали 4ХВ2С, 5ХВ2С, 6ХВ2С, а также 4ХС и 6ХС, содержащие 1,0–1,6% Сr и 0,6–1,6% Si.
Станки и инструменты» (14 «Технология машиностроения); книги и работы в области токарной обработки, обработки резанием, режущего инструмента. Данные п.п. 4.1-4.5 заносим в табл.1 «Регламент поиска», п.1). 5. Патентный поиск Задача этапа - обеспечить достаточную полноту и достоверность исследования путем тщательного отбора и анализа патентно-технической информации. Таблица 1 Регламент поиска № 1,2,3 Объект: борштанга с креплением резцов. Вид исследования: исследование уровня вида техники исследование патентной чистоты исследование патентоспособности Предмет Индексы Страны поиска Глубина Источники поиска МКИ (НКИ) поиска, информации (ИТР) и УДК Лет 1 2 3 4 5 1 )Режущая МКИ: РФ(СССР) 10 Патентные описания пластина В23В27/00 Великобритания (1987- 27/16 Германия -1997) Патентные бюлле- 27/22 США тени РФ и СССР УДК: Франция 621.9 Япония Реф. сб. ВНИИПИ 621.9.02 « Изобретения стран 621.9.941 мира» 2) - - РФ 20 США 17 Реф. журн. Япония 20 ВИНИТИ 14А 3) - - РФ(СССР) 50 «Резание металлов. Великобритания (1987- Станки и Германия -1997) инструмент» США ( 14 «Технология Франция машиностроения е можно в результате исследования его патентоспособности. 2. Цель исследования Целью исследования патентоспособности резца является правовая защита входящих в него ТР, удовлетворяющих критериям изобретения, путем выявления признаков изобретения в этих решениях и оформления заявок на изобретения. 3. Регламент поиска. Определение ИТР Признаками изобретения в усовершенствованном резце предположительно обладает ТР «Режущая пластина».
![]() | 978 63 62 |