телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы
Молочный гриб необходим в каждом доме как источник здоровья и красоты

РАСПРОДАЖАВидео -5% Игры. Игрушки -5% Всё для дома -5%

все разделыраздел:Физика

Вывод уравнения Шрёдингера

найти похожие
найти еще

Чашка "Неваляшка".
Ваши дети во время приёма пищи вечно проливают что-то на ковёр и пол, пачкают руки, а Вы потом тратите уйму времени на выведение пятен с
263 руб
Раздел: Тарелки
Совок №5.
Длина совка: 22 см. Цвет в ассортименте, без возможности выбора.
19 руб
Раздел: Совки
Наклейки для поощрения "Смайлики 2".
Набор для поощрения на самоклеящейся бумаге. Формат 95х160 мм.
10 руб
Раздел: Наклейки для оценивания, поощрения

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)

Эти работы, в которых исследователь попытался построить мост между макромеханикой и микромеханикой, содержат получившее известность дифференциальное уравнение волнового поля атома водорода, при помощи которого, по словам Планка, "волновая механика, казавшаяся ранее чем-то мистическим, сразу была поставлена на прочное основание". "Уравнение Шрёдингера", при составлении которого Шрёдингер пользовался советами преподававшего в то время в Цюрихе крупного математика Германа Вейля, относится к числу наиболее распространенных формул в мировой литературе по физике атомного века Его классическая красота вызывала и вызывает такое же восхищение и уважение физиков-теоретиков, как в свое время максвелловская система формул электромагнитного поля. Говоря об этой системе, Людвиг Больцман приводил восторженные слова Фауста: "Начертан этот знак не бога ли рукой?" Макс Борн, оценивая труд Шрёдингера, восклицал: "Что существует более выдающегося в теоретической физике, чем его первые шесть работ по волновой механике?" Уже в начале апреля 1926 года, после получения сигнальных оттисков первой основополагающей статьи по волновой механике, Планк писал Шрёдингеру "Читаю Вашу статью с тем же напряжением, с каким любопытный ребенок выслушивает развязку загадки, над которой он долго мучился, и радуюсь красотам, раскрывающимся перед моими глазами"

скачать реферат Квантовая теория

При отыскании уравнения Шрёдингера заметим, что одним из решений его в свободном пространстве должна быть плоская волна де Бройля (1). Найдем дифференциальное уравнение, удовлетворяющее перечисленным выше условиям, решением которого является эта волна. Дифференцирование (1) по x, y, z даст: Сложением полученных вторых производных найдем: Учитывая соотношения (3) найдём, что k2=p2/?2, таким образом, имеем: (6) Это дифференциальное уравнение, но не то, которое мы ищем. Действительно, при выводе величина p предполагалась постоянной, а потому уравнение (6) описывает конкретное движение с заданным постоянным импульсом. Продифференцируем теперь (1) по времени при постоянной ?: Учитывая (3), находим что , таким образом можно записать: (7) Это уравнение также не годится. Оно описывает движение частицы в свободном пространстве с постоянной кинетической энергией E. Однако, выразим из (7) энергию, а из (6) – квадрат импульса p2: (7 ) Учтём, что в нерелятивистской механике, в отсутствии потенциальных сил, E= p2/2m. Подставив в эту формулу полученные выражения для энергии и импульса, придём к однородному линейному уравнению (8) Это уравнение уже не содержит никаких индивидуальных параметров, выделяющих конкретное движение.

Рейлинг "Super Kristal", 60 см.
В настоящее время рейлинг все чаще стали применять для дизайна кухни. Рейлинг - это металлические держатели, которые закрепляются на
470 руб
Раздел: Крючки, держатели для полотенец, доски для записок
Кармашек в шкафчик "Машинки".
Ваш малыш вырос и ходит в детский сад! Его вещи будут всегда на своем месте в шкафчике в детском саду, если у него есть "Кармашек в
602 руб
Раздел: Прочие
Чехол для гладильной доски, 50х140 см.
Синтетический материал с металлизированной нитью.
308 руб
Раздел: Чехлы для гладильной доски
 Александр Федорович Можайский

Гений Ломоносова позволил сделать огромный скачок и в познании строения атмосферы. {18}Эйлер, Леонард (1707 - 1783) - действительный член Петербургской Академии наук, друг Ломоносова, знаменитый математик XVIII столетия и ученый энциклопедист. Большая часть научной деятельности Эйлера протекала в Петербурге, где он прожил свыше тридцати лет, скончался и похоронен. Работы в области создания теории струйного течения жидкостей легли в основание развития гидродинамики, а впоследствии, и аэродинамики. {19}Бернулли, Даниил (1700-1782) - действительный член Петербургской Академии наук. Многие годы прожил в Петербурге. Здесь в 1738 году написал работу "Гидродинамика", в которой содержится вывод уравнения, получившего имя ученого и являющегося одним из важнейших в современной гидро- и аэродинамике. {20}Жуковский, Николай Егорович (1847 - 1921) - великий русский ученый. Написал несколько сот работ по вопросам механики твердых, жидких и газообразных тел. С 80-х годов профессор Московского Университета и Московского высшего технического училища, занимался вопросами авиации

скачать реферат Механика микрочастиц

Отдельные события можно характеризовать лишь вероятностями их наступления. В. Гейзенберг делает следующий вывод: «В экспериментах с атомными процессами мы имеем дело с вещами и фактами, которые столь же реальны, сколь реальны любые явления повседневной жизни. Но атомы или элементарные частицы реальны не в такой степени. Они образуют скорее мир тенденций или возможностей, чем мир вещей и фактов». Основное уравнение квантовой механики – волновое уравнение Шрёдингера (1926). Оно не выводится, а постулируется. В квантовой механике оно играет такую же фундаментальную роль, как и уравнения Ньютона в классической механике. Его справедливость подтверждают следствия, вытекающие из него, которые согласуются с опытом (экспериментом). Это уравнение позволяет определить возможные состояния системы, а также изменение состояния во времени. Состояние микрочастицы характеризуется волновой функцией (пси–функция). Уравнение Шрёдингера имеет вид d2 16 см. Указанные четыре вида фундаментальных (лежащих в самом фундаменте материи) взаимодействий осуществляются путем обмена соответствующими частицами, служащими своеобраз­ными переносчиками этих взаимодействий.

 Диалоги (август 2003 г.)

И эта динамика извлекается. То есть вы получаете уравнение типа уравнения Шрёдингера, решаете его и возвращаетесь по сути дела, как бы в лоно обычной квантовой механики. И там можно, в общем-то, очень много решить проблем, в частности, например, проблему рождения Вселенной. Но есть ещё важный момент это то, что в 73-м году Фомин и Трайен предложили идею рождения Вселенной в результате некоей квантовой флуктуации. И оказывается, что это можно описать с помощью этого уравнения типа уравнения Шрёдингера. Это было сделано сначала Виленкиным, а потом уже многими другими. В частности, волновая функция Вселенной, о которой упоминал Андрей Анатольевич, была предложена Хартлом и Хокингом. И в рамках такой модели решается задача о рождении Вселенной, как некотором процессе, аналогичном альфа-распаду. То есть у вас есть частица, она при распаде испускается в результате некоего туннелирования классически запрещённого процесса, когда частица проходит под барьером. То есть это означает, что её энергия меньше высоты барьера

скачать реферат Использование дифференциальных уравнений в частных производных для моделирования реальных процессов

Работа начинается с рассмотрения простейших задач, приводящих к дифференциальным уравнениям гиперболического типа (колебания струны, электрические колебания в проводах). Затем рассматривается один из методов решения уравнений данного типа. Во второй главе рассматриваются дифференциальные уравнения параболического типа (распространение тепловых волн) и одно из приложений к данной сфере – температурные волны. В третьей главе рассматривается вывод уравнения дифракции излучения на сферической частице. Вследствие большого объема теории по применению дифференциальных уравнений для моделирования реальных процессов в данной дипломной работе не мог быть рассмотрен весь материал. В заключение хотелось бы отметить особую роль дифференциальных уравнений при решении многих задач математики, физики и техники, так как часто не всегда удается установить функциональную зависимость между искомыми и данными переменными величинами, но зато удается вывести дифференциальное уравнение, позволяющее точно предсказать протекание определенного процесса при определенных условиях. Литература.1. Н. С. Пискунов «Дифференциальное и интегральное исчисления», М., «Наука», 1972, том. 2. 2. И. М. Уваренков, М. З. Маллер «Курс математического анализа», М., «Просвещение», 1976. 3. А. Н. Тихонов, А. А. Самарский «Уравнения математической физики», М., «Наука», 1972. 4. Владимиров В. С. «Уравнения математической физики», М., «Наука», 1988. 1 Это предположение эквивалентно тому, что мы пренебрегаем величиной .----------------------- ?–?/?†?–?/?†?r

скачать реферат Построение графика функции различными методами (самостоятельная работа учащихся)

Так, например, умение найти значение функции при заданном значении аргумента используется при построении графиков функций, нахождении наибольшего и наименьшего значений функции, вычислении пределов функций, интегралов и др. В курсе физики оно используется практически при изучении всех вопросов. Это так называемые вычисления по формулам: длины пройденного пути при равномерном прямолинейном движении, силы тока в проводнике, координаты тела при равномерном и равноускоренном движении и т. д. Умение записать нужное равенство, зная, что заданная точка принадлежит графику функции (а также графику уравнения), требуется учащимся, например, в курсе геометрии при выводе уравнений прямой, окружности, плоскости. Важнейшее значение в функциональной подготовке учащихся - имеет формирование графических умений. График — это средство наглядности, широко используемое при изучении многих вопросов в школе. График функции выступает основным опорным образом при формировании целого ряда понятий — возрастания и убывания функции, четности и нечетности, обратимости функции, понятия экстремума.

скачать реферат Физико-топологическое моделирование структур элементов БИС

В конечном счете от точности данных моделей зависит точность прогнозирования электрических характеристик БИС. Общие положения математической формулировки задач моделирования элементов БИСОсновным этапом первых двух уровней моделирования является математическая формулировка задачи. Эта процедура включает вывод уравнении, описывающих основные физические процессы внутри структуры прибора, и граничных условий. Последние пpедставляют собой математическйе зависимости, хаpактеpизующие процессы, происходящие на поверхности структуры. Эти зависимости имеют большое значение для моделирования, так как они отражают взаимодействие прибора с окружающей средой. Формулировке математической модели объекта предшествует ранжирование учитываемых факторов, процессов и эффектов и выбор приближений, от которых зависят сложность и эффективность модели. При этом выбирают конфигурацию и геометрические размеры модельной области, аппроксимируют распределения концентрации легирующих примесей в ней, обосновывают пренебрежения второстепенными физическими процессами и эффектами.

скачать реферат Бозе-Эйнштейновский конденсат

В 1926 работавший тогда в Цюрихе австрийский физик Э.Шрёдингер, прослышав о работе де Бройля и предварительных результатах экспериментов, подтверждавших ее, опубликовал четыре статьи, в которых представил новую теорию, явившуюся прочным математическим обоснованием этих идей. Такая ситуация имеет свой аналог в истории оптики. Одной уверенности в том, что свет есть волна определенной длины, недостаточно для детального описания поведения света. Необходимо еще написать и решить выведенные Дж.Максвеллом дифференциальные уравнения, подробно описывающие процессы взаимодействия света с веществом и распространение света в пространстве в виде электромагнитного поля. Шрёдингер написал дифференциальное уравнение для материальных волн де Бройля, аналогичное уравнениям Максвелла для света. Уравнение Шрёдингера для одной частицы имеет вид =d /dx где m – масса частицы, Е – ее полная энергия, V(x) – потенциальная энергия, а ? – величина, описывающая электронную волну. В ряде работ Шрёдингер показал, как можно использовать его уравнение для вычисления энергетических уровней атома водорода. Он установил также, что существуют простые и эффективные способы приближенного решения задач, не поддающихся точному решению, и что его теория волн материи в математическом отношении полностью эквивалентна алгебраической теории наблюдаемых величин Гейзенберга и во всех случаях приводит к тем же результатам. П.Дирак из Кембриджского университета показал, что теории Гейзенберга и Шрёдингера представляют собой лишь две из множества возможных форм теории.

Универсальная вкладка для дорожных горшков (зеленый).
Вкладка для дорожных горшков подойдет для любого дорожного горшка, она хорошо ложится на сиденье, обеспечивая комфорт и удобство в
588 руб
Раздел: Прочие
Доска магнитно-маркерная, 90x120 см, алюминиевая рамка, полочка.
Доска магнитно-маркерная, размер 90x120 см. Картонная основа. Имеет универсальную поверхность, позволяющую наносить информацию
2509 руб
Раздел: Доски магнитно-маркерные
Полиэстерные этикетки, 210x297 мм.
Отличное решение для маркировки ваших электронных компонентов, пометок на папках и книжных полках. С серебряными этикетками маркировка
2900 руб
Раздел: Бейджи, держатели, этикетки
скачать реферат Исследование явления дисперсии электромагнитных волн в диэлектриках

Поэтому электрические свойства вещества можно характеризовать одной величиной — комплексной диэлектрической проницаемостью . Можно установить предельный вид диэлектрической проницаемости при больших частотах. В пределе при , и диэлектрическая проницаемость , определяемая выражениями (1.6), (1.12), стремится к единице при . Это же свойство диэлектрической проницаемости следует и из простого физического рассмотрения. При , когда частота волны велика по сравнению с собственными частотами колебаний электронов в атомах вещества, электроны можно считать свободными. Уравнение движения свободного электрона под действием гармонического поля . Здесь — масса и заряд электрона. Мы не учитываем силу, действующую на заряд со стороны магнитного поля, так как рассматривается нерелятивистский случай (). Поляризация среды (дипольный момент единицы объема, содержащей . (1.17) При и . Область применимости формулы (1.17) для сред, в которых нет свободных электронов, лежит в диапазоне далекой ультрафиолетовой области для самых легких элементов. С учетом (1.16) уравнения Максвелла для комплексных амплитуд примут вид . (1.18) Поясним вывод уравнения .

скачать реферат Волновые уравнения

Вывод уравнения колебания в электрических проводах.Электрический ток в проводах характеризуется величиной которые зависят от координат Х точки провода и от времени . Рассмотрим элемент провода ?Х. Можем написать, что падение напряжения на элементе ?Х равно.Это падение напряжения складывается из омического, равного где R и L –сопротивление и коэффициент индуктивности рассчитанные на единицу длинны провода. Знак минус взят потому, что ток течёт в направлении, обратном возрастанию U.Сокращая на ?Х, получим уравнение Далее разность токов, выходящего из элемента ?Х за время ? , будет Она расходуется на зарядку элемента, равную и на утечку через боковую поверхность провода в следствии несовершенства изоляции, равную Здесь А- коэффициент утечки. Приравняем эти выражения Уравнения (2) и (3) принято называть телеграфными уравнениями. Составим систему уравнений Из этой системы уравнений можно получить уравнение, содержащее только искомую функцию, и уравнение, содержащее только искомую функцию . Продифференцируем члены уравнения (3) по Х; члены уравнения (2) продифференцируем по и умножим их на С. Аналогичным образом получим уравнение для определения Если можно пренебречь утечкой через изоляцию (А=0) и сопротивлением (R=0), то уравнения (5) и (6) переходят в волновые уравнения: Исходя из физических условий формулируются граничные и начальные условия задачи.

скачать реферат Развитие аналитической геометрии

Впрочем, доказательство не приводится, да и формулы линейного преобразования координат у Декарта еще отсутствовали. В качестве первого примера Декарт выводит уравнение линии ЕС, описанной точкой пересечения линейки GL и неопределенно продолженной стороны C K плоской прямолинейной фигуры KL, сторона которой KL движется вдоль данной прямой ВА, заставляя вращаться вокруг точки G линейку, неизменно проходящую при этом через точку L. Приняв GA, перпендикуляр к ВА, равным а, KL = b, L = с, выбрав АВ за ось х и точку А за начало, Декарт обозначает «неопределенные и неизвестные величины» СВ = у, ВА = х. Тогда на основании подобия треугольников СВК и LK, с одной стороны, и CBL и GAL — с другой, быстро выводится уравнение линии ECG уу = су ( ху ау ( ас, так что эта линия первого рода и, как указывает без доказательства Декарт, гипербола (пример этот подробно разобрали комментаторы латинского издания «Геометрии»). Страница первого издания «Геометрии» Р. Декарта (1637): начало вывода уравнения линии ЕС Заменяя прямую C K другими линиями, можно получать таким образом бесконечное множество кривых.

скачать реферат Свет, фотоны, скорость света, эфир и другие «банальности»

То же самое происходит и со звуком. Правда, такие свойства звука были открыты совсем недавно, в связи с получением ультразвука. Оказалось, что ультразвуковые волны имеют острую направленность и могут рассматриваться как частицы, локализованные в пространстве. Вот вам и «беспомощность волновой теории»! Оказывается, что каждый раз, когда исследователи сами беспомощны что-либо объяснить, они обвиняют в этом классическую механику. Как показал Фейнман , законы колебаний зависят от частоты, так как от нее зависит характер процессов, протекающих в среде. Однако сам он удовлетворился лишь выводом уравнения колебаний, когда давление и температура в упругой волне меняются адиабатически. Ни один из исследователей, в том числе и Фейнман, не рассмотрели высокие частоты колебаний относительно длины свободного пробега частиц, когда процессы, происходящие при этом, приводят к поглощению тепла. В этом случае совершенно очевидно, что колебание не может распространяться сферической волной из-за распределения направлений движения отдельных частиц.

скачать реферат Макс Планк

В Нобелевской лекции, прочитанной в 1920 г., Планк подвел итог своей работы и признал, что «введение кванта еще не привело к созданию подлинной квантовой теории». 20-е годы стали свидетелями развития Эрвином Шредингером, Вернером Гейзенбергом, П.А.М. Дираком и другими квантовой механики – оснащенной сложным математическим аппаратом квантовой теории. Планку пришлась не по душе новая вероятностная интерпретация квантовой механики, и, подобно Эйнштейну, он пытался примирить предсказания, основанные только на принципе вероятности, с классическими идеями причинности. Его чаяниям не суждено было сбыться: вероятностный подход устоял. Вклад Планка в современную физику не исчерпывается открытием кванта и постоянной, носящей ныне его имя. Сильное впечатление на него произвела специальная теория относительности Эйнштейна, опубликованная в 1905 г. Полная поддержка, оказанная Планком новой теории, в немалой мере способствовала принятию специальной теории относительности физиками. К числу других его достижений относится предложенный им вывод уравнения Фоккера – Планка, описывающего поведение системы частиц под действием небольших случайных импульсов (Адриан Фоккер – нидерландский физик, усовершенствовавший метод, впервые использованный Эйнштейном для описания броуновского движения – хаотического зигзагообразного движения мельчайших частиц, взвешенных в жидкости). В 1928 г. в возрасте семидесяти лет Макс Планк вышел в обязательную формальную отставку, но не порвал связей с Обществом фундаментальных наук кайзера Вильгельма, президентом которого он стал в 1930 г.

Столик сервировочный Regent "Linea Bamboo", 50х30х6,5 см.
Столик сервировочный из серии BAMBOO изготовлен из бамбука с обработанной поверхностью. Бамбук - экологически чистый материал, он ценится
1546 руб
Раздел: Столики и подносы для постели
Тетрадь на резинке "Elements", А5, 120 листов, клетка, синяя.
Тетрадь общая на резинке. Формат: А5. Количество листов: 120, в клетку. Бумага: офсет. Цвет обложки: синий.
328 руб
Раздел: Прочие
Кубок металлический "Динара", золото/красный, основание мрамор, 23 см.
Конструктивные элементы: чаша, стем, цоколь. Чаша – металлическая, глубокая, цветная, в форме полусферы. Верх чаши – гладкий, ниже
527 руб
Раздел: Наградная продукция
скачать реферат Определение нагрузок на цилиндрические конструкции в потоке

В результате резко падает коэффициент лобового сопротивления и след становится более узким и, вероятно, апериодичным. Следовательно частота схода вихрей и амплитуда подъемной силы становятся случайными. Частота, с которой вихри отделяются от поверхности цилиндрической конструкции, обычно характеризуется безразмерной величиной называемой числом Струхаля Sh: где – частота отделения вихрей, d – характерный размер, V – скорость ветра. Когда сход вихрей является периодичным, – частота этого схода, если же сход является случайным необходимо говорить об энергетическом спектре, а не об одной частоте. Спектральная плотность боковой силы (цилиндр). Нормализованная спектральная плотность подъемной силы Если использовать Кармановскую спектральную плотность и потребовать выполнения условия =Ёормировки , то – частота на графиках в герцах. для больших чисел Re (по Фыну).В связи с тем, что после определения передаточной функции нужно перейти к частоте в . Основные допущения и уравнение поперечных колебаний прямого стержня. При выводе уравнений поперечного колебания мы будем предполагать, что в недеформированном состоянии упругая ось стержня прямолинейна и совпадает с линией центров тяжести поперечных сечений стержня.

скачать реферат Шпоры по физике

ZРz > ; E > 1)Если а=0 => не поглощает => дает на вещество и выбивает с hv /c) Принц Ринца: Все линии излу- Принцип прочности в кванто абсолютно белое тело его поверхности электроны, то P=(1 p)hv / cd s=(1 p)(W/cs чения данного атома могут бытвой механике:На основании из 2)Если 0 серое тело фотоэффект внешний 2)если d )=(1 p)(Ec/c) где Е-энергетичполучены путём всех возмож- вестного состояния микрочасти 3)Если а=0=>абсолютно чёрноепод действием света валентныеосвещённость. ных комбинаций его термов цы в данный момент времени тело(моделью АЧТ может слу- электроны отрываются от ато- Р=(1 р)(W/csd ) где cd =l(рас- v=c/; 1/=V=(R/c)(1/m2 – можно определить её состояние жить маленькое отверстие в бо-мов и остаются в нутрии веще стояние проходимое светом) => -1/ 2); Rл=R/c=1,097 107м в последующие моменты вре- льшой полости). тва,то фтоэф.внутренний(толь- Р=(1 р)(W/V)=(1 p)w Опыт Франка и Герца подтве-мени. Законы теплового излучения: ко в полупроводниках и диэлек По современным представленирдили дискретный характер пог4. Уравнение Шрёдингера 1. Закон Кирхгофа: отношение триках. ям свет обладает корпускуляр-лащения энергии.Теория не объВ квантовой механике состоя- спектральной плоскости энергеЗакон внешнего фотоэффектаволновым дуализмом, в одних яснила различную энтенсив- ние микрочастицы описывается тической светимости тела,к его 1.

скачать реферат Расчет распределения примесей в кремнии при кристаллизационной очистке и диффузионном легировании

Вместе с тем, вывод уравнений (1) и(2) без них был бы невозможен, а менее жесткие допущения приводят к существенному усложнению получаемых выражений. Наиболее жесткими являются условия 2 и 3. Допущение 2 в данной формулировке может выполняться только при бесконечно малых скоростях кристаллизации (скорости движения зоны). В этом случае сравнительно быстрая (по сравнению с диффузией в твердой фазе) диффузия в жидкой фазе в состоянии постоянно выравнивать концентрации компонентов системы в объеме расплавленной зоны. Использовании выражений (1) и (2) для представления распределения примеси при реальных скоростях кристаллизации приводит к необходимости изменить формулировку допущения 2. Выполнение условия постоянства концентрации компонентов по объему расплава возможно в данной ситуации только при реализации полного (идеального) перемешивания жидкой фазы. Предполагается, что в этом случае перераспределение компонентов и выравнивание состава в жидкой фазе происходит мгновенно - т. е. эффективный коэффициент диффузии в жидкой фазе Dж = ? .

скачать реферат Реальные газы

Реферат подготовила Магарамова Инесса 1.Реальные газы Модель идеального газа, используемая в молекулярно-кинетической теории газов, позволяющая описывать поведение разрежённых реальных газов при достаточно высоких температурах и низких давлениях. При выводе уравнения состояния идеального газа размерами молекул и их взаимодействием друг с другом пренебрегают. Повышение давления приводит к уменьшению среднего расстояния между молекулами, поэтому необходимо учитывать объём молекул и взаимодействие между ними. При высоких давлениях и низких температурах указанная модель идеального газа непригодна. При рассмотрении реальных газов – газов, свойства которых зависят от взаимодействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они проявляются на расстояниях превращение обыкновенного жидкого гелия при Т=2,9К в другую жидкую модификацию, обладающую свойствами сверхтекучести. 6. Третье начало термодинамики (Теорема Нернста) Третье начало термодинамики было сформулировано в 1906 году немецким физиком и химиком Вольтером Фридрихом Германом Нернстом (1864 - 1941) эмпирическим путем на основе обобщения экспериментальных данных и получило название теоремы Нернста: При стремлении температуры любой равновесной термодинамической системы к абсолютному нулю ее энтропия стремится к некоторой универсальной постоянной величине, значение которой не зависит от каких-либо термодинамических параметров системы и может быть принято равной нулю: . (1) Из утверждения теоремы Нернста о независимости значения энтропии равновесной системы при абсолютном нуле температуры от ее термодинамических параметров следует также выражение: , (2) где - любой термодинамический параметр системы, например, объем, давление и т.д. Здесь нижний индекс за скобками обозначает дифференцирование при постоянном значение величины .

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.