![]() 978 63 62 |
![]() |
Сочинения Доклады Контрольные Рефераты Курсовые Дипломы |
![]() |
РАСПРОДАЖА |
все разделы | раздел: | Химия |
Степень превращения | ![]() найти еще |
![]() Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок |
Но что подразумевают они под этими двумя словами? Старались, сколь возможно ясно, определить их, и первый из современных философов - Герберт Спенсер посвятил этому специальный труд1. Он разобрал явления, которые считает прогрессивными, сначала в неорганическом мире, затем в мире животных существ и, наконец, в роде человеческом. Он считает прогрессивными изменениями только те, "которые непосредственно или косвенно клонятся к увеличению общего блага, и только ввиду этого и надо считать их прогрессивными". Чтобы определить явления, составляющие прогресс, Герберт Спенсер считает необходимым параллельно проследить их как во внечеловеческом, так и в человеческом мире. Всюду, по его мнению, прогресс характеризуется превращением однородных явлений в более сложные; происходит постоянное обособление, будь это в мире планет, в эмбриональном развитии или в животных и человеческих обществах. Но обособление это не исчерпывает всего прогресса: в него входит в значительной степени превращение неопределенного состояния в гораздо более определенное
Из-за высокой вязкости инверсия затруднена и протекает до конца только при интенсивном перемешивании. Размер и форма частиц каучуковой фазы зависят от геометрии сосуда и мешалки, скорости сдвига, концентрации и молекулярной массы каучука, молекулярной массы полистирола, количества образовавшегося сополимера. При инверсии образующаяся дискретная фаза захватывает (окклюдирует) некоторое количество полистирола. При степени превращения стирола 30—40% двухфазная система становится устойчивой, и размер дискретных частиц перестает зависеть от условий перемешивания. Таким образом, структура ударопрочного полистирола формируется на стадии инверсии фаз. В конце процесса, когда содержание стирола значительно уменьшается, происходит частичное сшивание дискретной фазы, приобретающей структуру сшитого микрогеля. На этой стадии продукт представляет собой расплав ударопрочного полистирола, содержащего небольшое количество непрореагировавшего стирола (0,5—10%). В технике процесс осуществляют по непрерывной схеме аналогично полимеризации стирола. Часто для более плавной регулировки температурного режима (на завершающей стадии) сополимеризацию ведут в присутствии растворителя — толуола, этилбензола (10—30% от массы реакционной среды).
Для газовых реакций обычно применяют равноценное уравнение где PA — парциальное давление вещества А и т.д. Уравнения (2) и (3) применимы к простой (одностадийной) реакции и к отдельным стадиям сложной реакции, но не к сложной реакции в целом. Уравнения (4) и (5), выражающие Д. м. з. для равновесия, справедливы и в случае сложной реакции. Общим условием равновесия по отношению к реакции (1), приложимость которого не ограничена идеальными системами, является уравнение в котором [А] — активность вещества А и т.д. Уравнение (6) выводится из принципов термодинамики. С помощью Д. м. з. для равновесия вычисляют максимально достижимые степени превращения при обратимых реакциях. В число последних входят важные промышленные процессы — синтез аммиака, окисление сернистого газа и многие другие. На основе Д. м. з. для скоростей реакций получают кинетические уравнения, применяемые при расчёте химической аппаратуры. Лит. см. при ст. Кинетика химическая и Термодинамика химическая. М. И. Тёмкин. Дейталлаксы Дейталла'ксы, дейталлаксисы (от греч. déuteros — второй, последующий и állaxis — обмен), коррелятивные изменения органов животных в результате взаимного приспособления их друг к другу. Термин «Д.» ввёл А. Н. Северцов (1912). См. также Корреляция, Проталлаксы
В оптимальных условиях степень превращения аммиака в окись азота на одной сетке может достигать 86-90%, на двух сетках - 95-97%, на трех - 98%. На новых сетках высокая степень конверсии достигается не сразу, а в течение нескольких суток работы при 6000С. Процесс активации сеток при 9000С заканчивается через 8-16 часов. Поверхность платиновых сеток в процессе эксплуатации сильно разрыхляются, гладкие блестящие нити становятся губчатыми и матовыми. В результате этого сильно развивается поверхность катализатора, что приводит к повышению его активности. С течением времени разрыхление поверхности платиновых сеток приводит к их сильному разрушению и большим потерям платины. Добавление к платине родия и палладия имеет двоякое значение: во-первых, повышается активность катализатора, во-вторых, уменьшаются потери катализатора В промышленности нашли применение комбинированные катализаторы, в которых наряду с платиной используются и другие, более дешевые материалы. Разработанный ГИАПом комбинированный двухступенчатый катализатор состоит из сетки тройного сплава (первая ступень) и слоя неплатинового катализатора толщиной 50-65 мм (вторая ступень).
Для этого еще требуется, чтобы главное управление имперской безопасности получило официальное распоряжение от рейхсфюрера СС. Это, однако, может быть сделано также Вами по поручению рейхсфюрера СС". Вы уже обсуждали этот вопрос с Гиммлером, не так ли, свидетель? Вы были его агентом по сбору этих живых людей и превращению их в скелеты? Это правильно, свидетель? Зиверс: В этой форме это неправильно. Все эти события занимают такой большой период времени, что, поскольку я занимался лишь отдельными деталями, я не могу восстановить сейчас здесь так быстро всех обстоятельств. Джонс: Я совершенно уверен, что Вы вовсе не спешите восстановить их, но все-таки важно, чтобы Вы это сделали. Вы второй раз даете показания под присягой и мне хотелось бы, чтобы Вы в какой-то степени доказали, что Вы знаете, что такое присяга. Вы - образованный человек. Посмотрите на следующий документ ВБ-576, предъявляемый для того, чтобы освежить Вашу память. Это - письмо Брандта, адресованное в главное управление имперской безопасности, датированное 6 ноября 1942 г. и помеченное: "Секретно
Свежий газ подогревается за счет тепла прореагировавшего горячего газа сначала во внешнем теплообменнике, потом он частично или полностью проходит для подогрева последовательно три-четыре внутренних теплообменника, при 440-450 оС поступает в первый слой контактной массы. Эта температура регулируется открыванием задвижек. Главное назначение внутренних теплообменников - охлаждение частично окисленного и разогретого в слое катализатора газа, таким образом, чтобы режим ступенчато приближался к кривой оптимальных температур. Полочные контактные аппараты - один из наиболее распространненых типов контактных аппаратов. Принцип их действия состоит в том, что подогрев и охлаждение газа между слоями катализатора, лежащими на полках, производится в самом контактном аппарате с использованием различных теплоносителей или способов охлаждения .В аппаратах такого типа высота каждого нижележащего слоя катализатора выше, чем расположенного над ним, т.е. увеличивается по ходу газа, а высота теплообменников уменьшается, так как по мере возрастания общей степени превращения скорость реакции снижается и соответственно уменьшается количество выделившегося тепла.
Этот катализатор более активен, чем обычный промышленный цинк-хромовый катализатор; технико-экономические показатели работы на нем предпочтительнее: снижается расход исходного газа, увеличивается степень превращения окиси и двуокиси углерода, на 5—10 °С снижается температура процесса синтеза. В последнее время в связи с изменением сырьевой базы (переход на природный газ), совершенствованием методов очистки газа и развитием техники в ряде стран используют цинк-медь-алюминиевые и цинк-медные катализаторы. Катализаторы, имеющие в своем составе медь, более активны, чем цинк-хромовые, причем максимальная активность их наблюдается при 220—260 °С. В силу этой особенности катализаторы на основе меди обычно называют низкотемпературными. Высокая активность их при низких температурах позволяет проводить процесс при давлении ниже 200 кгс/см2, что значительно упрощает аппаратурное оформление. Разработан и освоен в промышленном масштабе катализатор СНМ-1 (Северодонецкий низкотемпературный метанольный). Химический состав невосстановленного образца следующий: 52—54% CuO, 26—28% Z O, 5—6% AlaOs, насыпная масса 1,3—1,5 кг/м3, удельная поверхность 80—90 м^г, пористость ~50%.
Дегидроциклизация парафинов с образованием ароматических углеводородов стала одной из важнейших реакций каталитического риформинга. Каталитическая дегидроциклизация парафинов протекает с предпочтительным образованием гомологов бензола с максимальным числом метильных заместителей в ядре, которое допускается строением исходного углеводорода. При увеличении молекулярного веса парафиновых углеводородов реакция дегидроциклизации облегчается . Возможные пути перехода от парафиновых углеводородов к ароматическим можно выразить следующей схемой; Каталитическая дегидроциклизация парафиновых углеводородов осуществляется в присутствии эффективного катализатора. В настоящее время изучено большое количество катализаторов. Наибольшее применение имеют окиси хрома и молибдена на носителях в присутствии добавок (платина, палладий, церий и кобальт). Установлено, что дегидроциклизация на алюмохромовом катализаторе в значительной степени подвержена влиянию давления: при низких давлениях степень превращения сырья повышается. В противоположность этому, на алюмомолибденовых катализаторах степени превращения при высоких и низких давлениях примерно одинаковы. В присутствии платинового катализатора возможны два механизма дегидроциклизации: 1) непосредственное образование ароматических углеводородов из парафинов и 2) образование шести-членных нафтенов с их последующей дегидрогенизацией.
Легконитруемые углеводороды успевают прореагировать с ионом нитрония на поверхности раздела фаз; в этом случае существенное влияние на скорость реакции оказывает величина этой поверхности, которую можно значительно увеличить интенсивным перемешиванием. Для туднонитруемых углеводородов процесс не успевает пройти на поверхности раздела фаз, и реакция протекает в объёме той фазы, в которую проникают реагенты; для таких реакций поверхность раздела меньше влияет на степень превращения углеводорода и перемешивание способствует лишь насыщению одной фазы другой. Труднонитруемые вещества реагируют в основном в кислотном слое. В органический слой проникает главным образом азотная кислота, которая в отсутствие серной кислоты обладаем меньшей нитрующей способностью. Стадия отрыва протона от ?- комплекса необратима, что делает необратимой реакцию в целом. Это объясняется сильным электроноакцепторным эффектом нитрогруппы, препятствующим протонированию по связанному с ней атому углерода. Однако если нитрогруппа занимает стерически затрудненное положение, при действии кислот может происходить денитрование, например в 9-нитроантрацене, 3,4,6-триизопропил-2-нитро- -ацетиланилине или миграция нитрогруппы - например в 3-замещённых 2-нитрофенолах и в 3-замещённых 2-нитроанилинах.
Гетерогенный катализ - та область науки, в которой действуют и которой управляют два рода законов: чисто химические и законы физики поверхности твердого тела. По этой причине, в частности, в гетерогенном катализе существует множество явлений, трудно поддающихся объяснению, а иногда, наоборот, получающих сразу несколько противоречащих друг другу трактовок. В ряду подобных явлений находится и температурный гистерезис. Вообще, гистерезисные эффекты - это опровержение ставшего поговоркой тезиса о том, что от перемены мест слагаемых результат не меняется. Иногда меняется. Наличие гистерезиса означает, что, двигаясь в одном направлении, мы видим не ту картину, которая возникнет перед нами, когда направление движения меняется на противоположное. Как если бы мы просматривали киноленту и потом, перематывая ее назад, обнаружили на экране не те же самые кадры, хотя и в обратной последовательности, а совсем другие. В нашем случае это выражается в том, что, постепенно повышая температуру, мы фиксируем в каждой точке ту или иную скорость реакции или степень превращения исходного вещества, а начав охлаждение, получаем в тех же температурных точках другую скорость или другую степень превращения.
К средствам массовой информации относим: телевидение, радио, периодическую печать и т.д. «Беспроволочная телеграфия» (так первоначально именовалась радиосвязь) явилась одним из величайших изобретений в истории науки и техники. Это завоевание научно-технического прогресса, прежде всего, открыло новый, исключительно плодотворный этап развития средств связи и информации. В сфере радиотехники зародились новые направления, прежде всего электроника, играющая роль (как и радиотехника в целом) выдающуюся в современной научно-технической революции. Во-вторых, изобретение радио – ото яркий показатель степени превращения науки в непосредственную производительную силу. Открытие в физике нового вида электромагнитного излучения явилось необходимой предпосылкой создания технических средств радиосвязи. Радио как феномен техники родилось в 1895 году. За несколько месяцев до его появления немецкий ученый Генрих Герц доказал существование в природе электромагнитных волн – и это дало начало новой технической эпохе. Радиовещание, как искусство, которое воссоздает картины мира при помощи звука, вошло в нашу жизнь сравнительно недавно, но на равных идет в соревновании со старейшими видами искусства, которые были у человечества.
Энергетические характеристики реакций, выражаемые термодинамическими соотношениями, определяют направления и максимальную равновесную степень превращения по ним исходных веществ. Равновесную степень превращения по химической реакции можно вычислить из уравнения зависимости константы равновесия Кр от изменения стандартной энергии Гиббса (свободной энергии, Gо): . Степень превращения исходных веществ по реакции является однозначной функцией константы равновесия Кр, аналитическое выражение которой определяется стехиометрией реакции. В результате термического разложения углеводородов получаются различные продукты и в том числе низшие олефины, метан, а также другие алканы меньшей молекулярной массы, чем исходный. Так, при описании пиролиза этана молекулярными реакциями основной является реакция дегидрирования с образованием этилена. При пиролизе пропана наряду с дегидрированием до пропилена происходит расщепление до этилена и метана . Аналогично реакциям дегидрирования и расщепления по двум направлениям можно представить разложение н-бутана. Алканы С2-С4 разлагаются согласно молекулярным реакциям : (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) Согласно расчетам , равновесное дегидрирование алканов С3-С4 может пройти до конца при температуре 800-850оС, а дегидрирование этана – лишь при 900-950оС.
Для повышения чувствительности датчик включен в дифференциальную схему, на его катушки подается напряжение повышенной частоты (500 Гц) и выходной сигнал усиливается с помощью фотокомпенсационного микровольтметра. В связи со сказанным при применении установки, приведенной на рис. 4, изменение толщины фотополимеризующегося слоя композиции на 10~6 м может фиксироваться на ЗИО-1 м диаграммной ленты потенциометра типа КСП-4 (10~2 В). Применение для исследований весов, коромысло которых с одной стороны соединено с реакционной ячейкой, помещенной в термостатируемую жидкость, и с другой — с якорем индукционного датчика (рис. 5), позволяет еще на порядок увеличить чувствительность установки. Кроме того, в этом случае данные, полученные с помощью индукционного датчика, можно контролировать визуально по показаниям весов. Полученные нами таким образом результаты исследований практически совпадают (рис. 6). Рис. 6. Зависимость степени превращения реакционноспо-собных групп от времени при полимеризации в присутствии 5 вес.% диацетила Установка, приведенная на рис. 5, может быть использована для проведения исследований фотоинициированной полимеризации и при больших усадках.
Далее раствор концентрировали в вакууме при 40-50° до уменьшения объема смеси в ~3 раза по сравнению с первоначальным. Выделившиеся кристаллы (2,98 г) перекристаллизовывали из воды и анализировали на содержание азота (по Кьельдалю) и сульфат-ионов (весовым методом). В маточном растворе бромид-броматным методом определяли содержание непредельных соединений, и с помощью реакции с сернокислым гидроксил-амином и последующего титрования выделившейся серной кислоты определяли концентрацию карбонильных соединений. Качественно присутствие в реакционной смеси карбонильных соединений обнаруживали с помощью реакции с 2,4-динитро-фенилгидразином. Для исследования кинетики взаимодействия в системе персульфат — ТКА навески исходных веществ растворяли в отдельных порциях воды (20°), после чего сливали их и по ходу реакции отбирали пробы для анализов. Полимеризацию акриламида проводили по методике, описанной в работе . Исходи из данных по предельной степени превращения персульфата калия (ПСК) под действием различных количеств ТКА было показано, что в отсутствие каких-либо добавок ПСК реагирует с ТКА в соотношении 1:2.
На скорость химических реакций в общем случае влияние концентрации описывается уравнением: u = kDc, причем u может быть выражено через изменение массы продукта D в единице реакционного объема концентрации с или степени превращения х во времени, т.е. или , где Dc определяется различно, в зависимости от порядка реакции и обратимости ее, а также от степени перемешивания. Влияние давления. Повышение давления ускоряет газовые реакции аналогично повышению концентрации реагентов, так как с ростом давления увеличиваются концентрации компонентов. Следовательно, влияние давления увеличивается с возрастанием порядка реакции. Всегда благоприятно применение давления для процессов, протекающих с уменьшением газового объема, так как, согласно принципу Ле Шателье, повышение давления вызывает увеличение выхода продукта. Выход продукта газовой реакции синтеза увеличивается с повышением давления. Повышение давления уменьшает объем газовой смеси, в результате чего снижаются размеры аппаратов и сечения газопроводов. Небольшое повышение давления мало влияет на скорость процессов в жидкой фазе, однако скорости многих реакций в жидкой среде сильно увеличиваются при весьма высоких давлениях.
Сорбционная емкость полукокса по фенолу составляет 8,5 - 14,5 % при начальной концентрации фенола в выбросах около 0,1 г/м3 и влажности потока 30 г/м3. После регенерации 70 % десорбированного фенола может быть возвращено в производство. Известен способ обезвреживания фенола и формальдегида, путем окисления отработанных газов, содержащих фенол и формальдегид, озоном (степень превращения около 90 %) до углекислого газа и воды. В некоторых производствах фенопластов, например при получении фенольных пресс-порошков, в атмосферный воздух выбрасывается пыль. Санитарная очистка отработанного воздуха в этих процессах достигается применением рукавных фильтров типа ФРОГ или ФРЭЖ с антистатическим полотном. Расширение марочного ассортимента фенопластов вызывает необходимость непрерывного совершенствования действующих систем газоочистки и разработки новых методов обезвреживания газовых выбросов, содержащих фенол и его производные . 2. Заключение. Основные направления снижения уровней выбросов в атмосферу в промышленности пластмасс Непрерывно растущие мощности производств пластмасс, вовлечение в технологию все новых и новых веществ побуждают к постоянному совершенствованию газоочистительных средств и способов, используемых в промышленных процессах.
Удельная поверхность исходного носителя (сталь ФНС-5) составляет 1,5 м2/г. После стадии алитирования Syfl уменьшается до 1,4 м2/г, что объясняется заполнением поверхности металла алюминием. Последующий окислительный отжиг позволяет увеличить удельную поверхность в 1,6 раза за счет образования на поверхности оксидной пленки. После пропитки раствором соли металла-активатора и восстановительного отжига величина Sya не изменяется, что говорит об очень небольшой толщине наносимого активного слоя. Основные свойства системы А1/ФНС-5: удельная поверхность 2,2 м2/г, теплопроводность 2,4 Вт/(м К), пористость 32—37%. Полученный контакт А1/ФНС-5 модифицируют медью и никелем. Активные компоненты вводят методом пропитки водными растворами соответствующих солей в количестве 0,3—0,5% (масс). Модифицирование выполняют двумя способами: 1) последовательное нанесение меди и никеля на алитированную подложку ФНС-5 с чередованием прокаливания системы (после процедуры нанесения каждого активного компонента) в токе водорода при 350 0С (K -1); 2) последовательное нанесение активных компонентов, затем однократная процедура восстановления (K -2). Рис. 3. Зависимость степени превращения O от температуры на катализаторах с металлическим носителем (сталь ФНС-5): 1, 2 — K -1; 3, 4 — K -2; 2, 4 — активация воздухом Рис. 4. Зависимость степени превращения СО (1), O (2) и СН4 (3) при их совместном присутствии в газовом потоке на AI, i-блочном катализаторе (20% AI, 80% i) Катализаторы Сu, i, Al /ФНС-5 проявляют достаточно высокую активность в процессе комплексной очистки газов от СО и Oх.
На степень превращения в четвертичное соединение и водорастворимость получившегося производного влияла молекулярная масса исходного образца хитозана. Хотя хитина в природе много, он имеет ограниченное применение из-за его недостаточной растворимости и реакционной способности. Хитозан растворим уксусной кислоте и других органических растворителях. Хитозан обладает некоторым бактерицидным и фунгицидным действием. Однако хитозан показывает свою биологическую активность только в кислой среде, так как он плохо растворяется при pH выше 6,5. Таким образом, водорастворимые производные хитозана, которые растворяются в кислоте, могут иметь хорошие шансы быть внедренными в медицинскую практику как антибактериальные средства. Четвертичные аммониевые соли хитозана были исследованы на предмет увеличения растворимости. Опубликована информация о синтезе - диметилхитозана и получении -триметилхитозана йодида с формальдегидом и боргидридом натрия. Триметилхитозан йодид аммония был также получен реакцией низкоацетилированного хитозана с йодистым метилом и гидроксидом натрия при контролируемых условиях. -алкил хитозан был приготовлен введением алкильной группы в аминные группы хитозана (Mv 7,25·105) через основание Шиффа.
![]() | 978 63 62 |