![]() 978 63 62 |
![]() |
Сочинения Доклады Контрольные Рефераты Курсовые Дипломы |
РАСПРОДАЖА |
все разделы | раздел: | Охрана природы, Экология, Природопользование |
Экстракционно-фотометрический метод определения тяжелых металлов в природных водах | ![]() найти еще |
![]() Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок |
Паш изобрёл (1844) безопасные, т. н. шведские, спички, а Ю. Э. Лундстрём разработал технологию и оборудование для их массового производства. К. Д. Экман создал метод производства высококачественной сульфитной целлюлозы (первый завод вступил в строй в 1874). Л. М. Эрик-сон стал известен многочисленными усовершенствованиями в области телефонии, в 1896 он основал телефонную фирму. К. Г. П. Лаваль изобрёл центробежный молочный сепаратор непрерывного действия (1878), паровую турбину активного типа (1889) и создал теорию сопла, предложил одну из первых конструкций доильных машин (1896). Ю. А. Бринелль предложил поныне широко используемый в технике метод определения твёрдости металлов. Н. Г. Дален создал систему автоматического включения (с темнотой) и выключения (с рассветом) ацетиленовых светильников маяков (Нобелевская премия 1912). С. Вингквист изобрёл сферические роликовые подшипники и наладил их массовое производство (1907). На рубеже 19—20 вв. в Ш. развернулось гидроэнергетическое строительство; в 1910 вступила в строй крупнейшая для того времени в мире ГЭС Трольхеттан. В 20 в. в математике продолжались работы по теории функций комплексного переменного (ученики Миттаг-Леффлера — Э. Линделёв и О
Количество точечных проб от каждой единицы транспортной тары должно быть не менее двух. Общая масса пробы от каждой отобранной единицы транспортной тары должно быть от 0,3 до 3,0 кг в зависимости от массы продукта, требуемого для испытания. Отобранные пробы сока подготавливают по ГОСТ 26671-85. 5.5.2 Методы контроля Для контроля качества сока предприятия-изготовители, потребители и инспекции по качеству применяют нормальный контроль. В случае разногласий в оценке качества применяют усиленный контроль. К методам контроля сока согласно ГОСТ 657-79 относится: метод определения массовой доли растворенных сухих веществ по ГОСТ 8756.2-82; метод определения массовой доли спирта по ГОСТ 25555.2-82; метод определения титруемых кислот по ГОСТ 25555.0-82; метод определения осадка по ГОСТ 8756.9-78; метод определения сорбиновой кислоты по ГОСТ 26181-84; метод определения минеральных примесей по ГОСТ 25555.3-82; метод определения примеси растительного происхождения по ГОСТ 26323-84; метод определения посторонних примесей (визуально); метод определения тяжелых металлов и мышьяка по ГОСТ 26927-86; метод микробиологического анализа по ГОСТ 26668-85. 5.6 Правила транспортирования и хранения Специфика перевозок соков заключается в их упаковке и температурном режиме.
РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ ИНСТИТУТ (ИРЭ) РАН создан в 1953 в Москве. Исследования по радиофизике, радиоастрономии, физике полупроводников, сверхвысокочастотной электронике, квантовой электронике и др. РАДИОТЕХНИЧЕСКИЕ ВОЙСКА род войск, предназначенный для ведения радиолокационной разведки воздушного противника и обеспечения информацией о нем соединений и частей войск ПВО и других видов вооруженных сил. РАДИОФИЗИКА область физики, в которой изучаются процессы, связанные с электромагнитными колебаниями и волнами радиодиапазона: их возбуждение, распространение, прием и преобразование частоты, а также возникающие при этом взаимодействия электрических и магнитных полей с зарядами в вакууме и веществе. Радиофизические методы исследования проникают в др. области физики (напр., в оптику) и за ее пределы. Некоторые разделы радиофизики выделяются в самостоятельные области (радиоастрономия, радиоспектроскопия, квантовая электроника и т. д.). РАДИОХИМИЧЕСКИЙ АНАЛИЗ совокупность качественного и количественного методов определения радионуклидов в природных и искусственно полученных объектах
Они играют роль исходных данных для других показателей. В силу этого определение параметров геохимического фона почвы должно быть стандартизовано и учитывать приборно-инструментальную специфику метода анализа. Определение концентрации металла в почве широко используемым методом эмиссионной спектроскопии или нейтронно-активационным методом даст представление о валовом (суммарном) содержании всех форм соединений определяемого металла. Методы определения концентрации металла н экстракционном растворе позволяют оценивать содержание тех или иных форм нахождения соединении металла в почве в зависимости от состава и методики экстракции. Вполне понятно, что валовые значения концентрации металла значительно выше. чем значения концентрации отдельных форм. определяемые и растворах обычно методом атомно- абсорбционной спектроскопии . Распределение значений валовой концентрации чаще аппроксимируется логорифмически – нормальным законом Гауса , распределение значении концентрации отдельных форм – нормальным законом Гауса . Без характеристики геохимического поля невозможна диагностика загрязнения почвы тяжелыми металлами. Признаками загрязнения могут служить 1) Повышенное среднее значение (модальное, среднеарифметическое, среднегеометрическое) концентрации металла по сравнению с фоновым значением: 2) расширение пределов разброса аналитических данных за счет значений, превышающих среднее статистическое, наглядно проявляющееся в асимметрии гистограмм в сторону больших значений.
При повышенных концентрациях ионов тяжелых металлов в воде этот фильтр ничем помочь не может, поскольку в таком случае необходимы ионообменные компоненты, а INSTAPURE F-3CE их не содержит. Поэтому этот фильтр подходит для доочистки воды в районах с благополучной экологической обстановкой. Его применение можно порекомендовать для жителей крупных городов. С его помощью Вы сможете получить более приятную для питья воду, не имеющую достаточно резкого запаха хлора. Кроме того, если изначально в воде присутствовали мельчайшие кусочки ржавчины с водопроводных труб, INSTAPURE F-3CE сделает ее более прозрачной. Если же Вы не уверены в микробиологической безопасности водопроводной воды и в отсутствии там ионов тяжелых металлов, советуем подыскать что-нибудь посерьезнее. *NEROX 01 ($40)*. Производитель - компании NEROX FILTER OY (Финляндия), НПП СИМПЭКС, Симферополь (Украина), Объединенный институт ядерных исследований, Дубна (Россия). Компактный переносной фильтр для питьевой воды. Фильтрует воду через трековую мембрану с диаметром пор 0.4 микрона, плотность пор - 300 млн./кв. см
В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк). В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, M , Fe, Co, i, Cu, Z , Mo, Cd, S , Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. Таким образом, к тяжелым металлам относятся Pb, Cu, Z , i, Cd, Co, Sb, S , Bi, Hg. Формально определению тяжелые металлы соответствует большое количество элементов.
При специальных обследованиях, проводящихся, в частности, при аварийных сбросах загрязняющих веществ в водоем, отбираются пробы для проведение полного химического исследования качества воды. Для аналитического определения показателей качества природных вод нормативными документами (ГОСТы и др.) рекомендовано более 20 различных методов, причем для ряда компонентов допускается применение до 5 методик, отличающихся по своим метрологическим характеристикам. Выбор метода предоставляется на усмотрение руководства аналитической лаборатории и, как правило, определяется, в первую очередь, уровнем приборного обеспечения и квалификацией аналитиков. Серьезной проблемой является разновременное введение в действие ГОСТов на различные методы анализа и, соответственно, переход на поступающие новые ГОСТы в различных лабораториях, что затрудняет сопоставление результатов при региональных обобщениях и анализа многолетних рядов наблюдений. К тому же при предоставлении аналитической информации обычно не указывается использованная методика анализа. В связи с этим при создании и пополнении банка данных аналитических определений по результатам мониторинга необходимо обязательно указывать применяющуюся методику определения и ее метрологические характеристики, подтвержденные результатами параллельных анализов и определения стандартных растворов.
В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк). В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, M , Fe, Co, i, Cu, Z , Mo, Cd, S , Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. Таким образом, к тяжелым металлам относятся Pb, Cu, Z , i, Cd, Co, Sb, S , Bi, Hg. Формально определению тяжелые металлы соответствует большое количество элементов.
Научно-философские изыскания В.И. Вернадского также были направлены на выявление механизмов взаимодействия «живого вещества» с окружающей неживой природой, биогеохимическим и геохимическими циклами элементов в биосфере, выявление геохимических полей «устойчивости жизни» или «пределов жизни». Нарушение «пределов жизни», которые могут повлечь за собой гибель живых организмов, вызываются как естественными природными (избыток или недостаток химических элементов, геомагнитные поля, радиоактивные излучения, вулканические извержения и др.) так и искусственными антропогенными воздействиями (вредные газовые выбросы, пестициды, удобрения, тяжелые металлы, сточные воды предприятий, твердые отходы, мусор и др.). Так, недостаток некоторых элементов питания в почве, особенно микроэлементов, приводит к резкому снижению продуктивности сельскохозяйственных культур и устойчивости к неблагоприятным абиотическим и биотическим факторам. К естественным факторам глобальных воздействий на биосферу следует отнести геофизические и космические факторы (геомагнитные поля, космические излучения).
В случае с микроорганизмами в комплексы будут связаны группировки белков оболочки клеток, что повлечет нарушение в обменах веществ клетки с внешней средой вплоть до гибели клетки. При действии комплексных соединений на сложные организмы в конечном итоге соединения с аминокарбоксильными группировками концентрируются в кожном покрове (коллаген) и волосяном покрове (кератин) и, по мере его обновления, выводятся из организма, практически не оказывая влияния на важнейшие жизненные функции. Все исследованные бактерицидные комплексы в соответствии с ГОСТ относятся к четвертому классу опасности – малоопасным веществам. Наряду с этим были разработаны экологически безопасные реагенты для детоксикации тяжелых металлов в воде, почвах и на твердых поверхностях. В непораженных природных объектах содержатся соединения (комплексы) меди, цинка и других металлов, участвующих в круговороте веществ в природе. Ионы марганца, хрома, кобальта, никеля, меди, цинка, кадмия и свинца являются типичными комплексообразователями. Они образуют устойчивые в растворе соединения с карбоновыми кислотами, оксикислотами, аминами, аминокислотами и другими лигандами.
Дело в том, что селен входит в состав глутатионпероксидаз (связан с тиогруппами, перекисью и целостностью мембран). Соединения селена противодействуют токсичности определенных тяжелых металлов. При недостаточности селена может обнаруживаться токсичность небольших количеств некоторых металлов, имеющихся в организме. Селен и сера могут заменять друг друга в определенных структурах и реакциях. Однако селен не может быть заменен соединениями серы с точки зрения своей роли в питании. Токсическое действие селена связывают с его способностью замещать в белковых молекулах серу. Образуются селенсодержащие аминокислоты, что приводит к нарушению окислительно-восстановительных процессов в организме. В результате в организме накапливаются недоокисленные продукты обмена( ПВК, молочная кислота и др. ). Токсичность селена для животных может быть уменьшена под воздействием белка пищи, мышьяка, соединений серы, льняного масла. Ни метионин, ни витамин Е в высоких дозах не обеспечивают защиты от токсичности селена, но их одновременный прием уменьшает токсическое действие селенитов на печень.
Мониторинг природных вод с использованием ИСЭ Ионоселективные электроды (ИСЭ) являются довольно удобным средством постоянного наблюдения за изменением состава природных вод. Процедура анализа довольно проста: опусти электроды в речку и проводи измерения. По крайней мере, так это описывается в рекламных проспектах. Однако таким образом могут использоваться только часть электродов. Что же мешает использовать другую часть электродов в мониторинге природных вод? Во-первых, это высокие пределы обнаружения ряда электродов. Вопреки бытующим в среде химиков представлениям, ПДК не является ориентиром реального содержания анализируемого иона в природных водах. Как правило, в водах существенно меньше интересующих нас ионов! Одна московская фирма наплодила уйму методик определения ионов в природных водах. Использовались все известные электроды. Однако в действительности пригодными оказались 5-6 методик, а остальные методики определяли скорее отсутствие ионов, чем их присутствие. Во-вторых, некоторые электроды требуют различного рода добавок, маскирующих негативное влияние примесей и создающих необходимый рН среды.
При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. Таким образом, к тяжелым металлам относятся Pb, Cu, Z , i, Cd, Co, Sb, S , Bi, Hg. Формально определению тяжелые металлы соответствует большое количество элементов. Однако, по мнению исследователей, занятых практической деятельностью, связанной с организацией наблюдений за состоянием и загрязнением окружающей среды, соединения этих элементов далеко не равнозначны как загрязняющие вещества. Поэтому во многих работах происходит сужение рамок группы тяжелых металлов, в соответствии с критериями приоритетности, обусловленными направлением и спецификой работ.
Экстракцию проводят в присутствии кислот, щелочей или буферных растворов, создавая рН среды, оптимальное для извлечения ЛВ или его метаболита. Вещества, содержащиеся в полученных экстрактах (реэкстрактах), определяют фотометрическим, спектрофотометрическим или флуориметрическим методом. Весьма перспективен чувствительный экстракционно-фотометрический метод, основанный на экстракции ЛВ из биологической жидкости с последующим взаимодействием с кислотными или основными красителями (бромтимоло- вым синим, метиловым оранжевым, бромкрезоловым зеленым и др.). Образующиеся окрашенные продукты (ионные ассоциаты) нередко специфичны для ЛВ и количественно экстрагируются органическим растворителем (хлороформом, бензолом, дихлорэтаном). Наиболее часто в биофармацевтическом анализе используютспектрофотометрию в УФ- и видимой областях спектра. Этот метод отличается простотой выполнения и достаточной точностью, не требует большого количества операций при подготовке к анализу испытуемого образца. Сравнительно невысокая чувствительность спектрофотометрических методик (от 1 мкг/мл до 1 мг/мл) ограничивает применение данного метода для тех групп ЛВ, суточная доза которых составляет около 1 г.
Наибольшее практическое применение в контроле германиевого производства получили методы алкалиметрическоготитрования комплексных кислот германия с многоатомными спиртами и ортодифенолами. Для определения миллиграммовых количеств германия используются нерпямые оксидиметрические методы, основанные на йодометрическом или ванадатометрическом титровании органических оснований, осажденных в виде германомолибдатов. С появлением комплексонометрического метода, применяемого в широком диапазоне концентраций германия, эти методы постепенно утрачивают свое былое значение. Прямой йодометрический метод, основанный на титровании двухвалентного германия, из-за своей сложности не получил большого распространения. Фотометрические методы определения германия Малые количества германия в исследуемых образцах чаще всего определяют с использованием фотометрических методов анализа, для чего в последнее время предложено большое количество органических реактивов. Из неорганических соединений для фотометрического определения германия используются практически только германомолибденовая кислота и продукт ее восстановления – германомолибденовая синь.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕТСТВО ПО ОБРАЗОВАНИЮ Реферат Железо в почвах Методы определения железа Выполнила: Проверила: СодержаниеВведение Глава 1. Железо в почвах Глава 2. Методы определения железа в почвах 2.1 Атомно-абсорбционный метод 2.2 Комплексонометрическое определение железа в почвах 2.2.1 Методика комплексонометрического определения валового содержания железа в почвах 2.3 Фотометрические методы определения железа 2.3.1 Методика определения общего содержания железа сульфосалицинатным методом 2.4 Методика определения подвижных форм железа с помощью роданида аммония Список литературы Введение Железо — элемент, абсолютно необходимый для жизни растений, без железа не образуется хлорофилла. В почвах железо встречается в составе минералов группы ферросиликатов, в виде гидроокислов, окислов, простых солей, а также ферро- и ферриорганических комплексных солей. В результате выветривания минералов, содержащих железо, освобождается гидроокись железа — малоподвижное соединение, выпадающее в виде аморфного геля Fe2O3 H2O и, переходящее при кристаллизации в гетит Fe2O3 Н2O и гидрогетит Fe2O3 ЗН2O.
КУРСОВАЯ РАБОТА на тему: «Проблемы водоснабжения России» ОглавлениеВведение Глава I Литературный обзор Основные типы вод 1.2 Формирование химического состава подземных вод Миграция элементов в подземных водах Влияние газового состава воды на миграцию элементов 1.3 Водные ресурсы и водный баланс Кавказа 1.4 Влияние химического состава воды на здоровье населения 1.5 Эпидемиологическая оценка воды 1.6 Гигиенические нормативы качества питьевой воды 1.7 Гигиенические требования питьевой воды 1.8 Гигиеническая оценка источников и систем водоснабжения Глава II Экспериментальная часть 2.1 Организация контроля за качеством воды централизованных систем питьевого водоснабжения 2.2 Методы определения показателей качества питьевой воды 2.2.1Метод определения содержания вкуса, запаха, цветности и мутности 2.2.2 Метод определения общей жесткости 2.2.3 Метод определения содержания сухого остатка 2.2.4 Метод определения общего железа 2.2.5 Метод определения содержания нитратов 2.2.6 Методика определения массовой концентрации сероводорода и сульфидов в водах 2.2.7 Методы определения массовой концентрации фторидов 2.2.8 Определение йода в воде 2.3 Метрологическое обеспечение лабораторных исследований Глава III Обсуждение результатов Выводы Литература Введение Сегодня проблему воды следует считать одной из важнейших проблем охраны окружающей среды, ибо вода это не только здоровье населения, но и жизнь животного и растительного мира.
Установлено, что загрязнение вод водозаборов тяжелыми металлами осуществляется водами донных отложений. Фактические данные указывают на высокие концентрации марганца не только в донных отложениях Воронежского водохранилища, но и во взвесях малых рек бассейна р. Воронеж - реки Усманка, Ивница и др. Еще одним фактическим источником загрязнения воды водохранилища являются намывные грунты для строительства микрорайонов левобережья города вблизи Отрожки. Поднятые со дна водохранилища песчано-глинистые отложения, обогащенные тяжелыми металлами, в течение срока функционирования водоема подвергаются инфильтрации атмосферных осадков, паводковых вод, которые способствуют вымыванию загрязнителей и выносу их в водохранилище. На южном участке отмечается техногенез, приведший к появлению в грунтовых водах Cr6 , M 2 за счет фильтрации стоков из дефектных труб водонесущих коммуникаций, за счет вымывания загрязнителей из почв городского типа в районе р. Песчанка. Таким образом, выявляется неблагополучное экологическое состояние гидросистемы в целом.
![]() | 978 63 62 |