телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы
путь к просветлению

РАСПРОДАЖАТовары для спорта, туризма и активного отдыха -30% Бытовая техника -30% Видео, аудио и программное обеспечение -30%

все разделыраздел:Химия

Химическая термодинамика

найти похожие
найти еще

Ночник-проектор "Звездное небо, планеты", черный.
Оригинальный светильник-ночник-проектор. Корпус поворачивается от руки. Источник света: 1) Лампочка (от карманных фанариков); 2) Три
350 руб
Раздел: Ночники
Горшок торфяной для цветов.
Рекомендуются для выращивания крупной рассады различных овощных и цветочных, а также для укоренения саженцев декоративных, плодовых и
7 руб
Раздел: Горшки, ящики для рассады
Фонарь желаний бумажный, оранжевый.
В комплекте: фонарик, горелка. Оформление упаковки - 100% полностью на русском языке. Форма купола "перевёрнутая груша" как у
87 руб
Раздел: Небесные фонарики
Таким образом, U ? сумма всех видов тепловой энергии движения элементарных частиц, энергии связи и энергии агрегатных состояний. Это сложная термодинамическая функция, полностью определяемая состоянием системы или соответствующим сочетанием параметров (р и Т). Если система поглощает энергию, то запас внутренней энергии растет (?U>0). Если работа совершается системой, то А — положительная величина; если же работа совершается над системой, то А отрицательна (например, сжатие газа). Как Q, так и А в уравнении (1) характеризуют процесс и от состояний системы (начального и конечного) зависят неоднозначно, так как из начального состояния подойти к конечному состоянию можно разными путями и с различным поглощением энергии и различной величиной работы. Поэтому уравнение (1) мы не можем записать в дифференциальной форме, так как только одно приращение ?U однозначно определяется параметрами состояния р, v, Т. Если известен закон изменения параметров в данном процессе, то уравнение первого закона термодинамики можно записать в дифференциальной форме и исследовать математически. В области применения химических реакций наиболее часто встречаются процессы, протекающие при постоянном объеме (изохорический) и при постоянном давлении (изобарический). 1. Изохорический процесс: v = co s . В этом случае параметры р и Т связаны между собой уравнением Гей-Люссака, р/Т = co s . Уравнение (1) записывается в дифференциальной форме: dQ=dU dA. (3) Но если объем постоянен, значит работа расширения или сжатия газа совершаться не может: dA==pdv=0. Следовательно, dQ = - dU; приравниваем частные производные по температуре: или dU = Cvd , (4) где Сv — теплоемкость при постоянном объеме. Уравнение (4) позволяет вычислять изменение внутренней энергии системы при изменении температуры, если не происходит каких-либо изменений агрегатного или полиморфного состояния. Как известно, при химической реакции внутренняя энергия изменяется: если энергия выделяется, то это соответствует уменьшению запаса внутренней энергии, и наоборот. Поэтому тепловой эффект и изменение внутренний энергии имеют обратные знаки: U = -Qv. (5) 2. Изобарический процесс: р = co s . В этом случае по закону Гей-Люссака v/ = co s . Кроме того, из уравнения (3) не выпадают отдельные члены, так как при постоянном давлении расширение и сжатие газа возможно, как и нагревание и охлаждение. В этом случае dQ=dU pdv. После интегрирования в пределах 1—2 получим: Выражение в скобках (U pv) представляет собой термодинамическую функцию, которую назовем энтальпией Н: H=U pv. (6) Энтальпия — это энергосодержание системы, включающее внутреннюю энергию и работу. Тогда (7) Если система поглощает энергию Q1-2, то ?Н больше нуля, и если в этой системе происходит химическая реакция, то она будет эндотермической: (8) Так как в дальнейшем мы будем использовать понятие разности энтальпий химической реакции, то необходимо помнить соотношение: Экзотермические реакцииЭндотермические реакции ?H0?H>0; Qp Разность энтальпий химической реакций обратно по знаку тепловому эффекту реакции при постоянном давлении. Для вычисления энтальпии исходим из соображений, что Q = ?H; приравниваем частные производные по температуре: (9) или d(?Н)=CpdТ, где Ср—теплоемкость при постоянном давлении.

Содержание: I. Теоретическая часть 1. Введение 2. Законы термохимии 3. Элементы термодинамики 4. Первое начало термодинамики 5. Элементы второго начала термодинамики 6. Энтропия II. Экспериментальная часть III. Расчетная часть Список используемой литературы В результате химической реакции выделяется или поглощается энергия, так как реакция сопровождается перестройкой энергетических уровней атомов или молекул веществ, участвующих в ней, и веществ, образующихся в ходе реакции. Реакции, при которых наблюдается выделение энергии, называются экзотермическими (Q>0). Реакции, идущие с поглощением энергии, называются эндотермическими (Q Величина энергии отдельной химической связи очень мала. Её удобно выражать в электронвольтах на атом. Поскольку обычно в реакциях участвуют относительно большие количества веществ, то общие количества энергии получаются также большие. Так, элементарный расчет показывает: на 1 атом: 1эВ=1,6?10-19Кл?1В = 1,6. 10-19 Дж, на 1 моль: 1,6?10-19?6,02?1023=9,65?104 Дж/моль = 96,5 кДж/моль. Энергия, образующаяся в результате химических реакций, может выделяться в разных формах, но, конечно, в эквивалентных количествах. Так, например, фотохимические процессы при фотографии развиваются при поглощении квантов лучистой энергии галидами серебра и, наоборот, можно построить источник когерентного излучения—лазер, работающий на энергии химических реакций. Затрачивая электрическую энергию, можно выделять нужные вещества из растворов или расплавов путем электролиза, с другой стороны, можно получить энергию за счет химических реакций, протекающих в гальванических элементах или аккумуляторах. Чаще всего в, результате химических реакций выделяется или поглощается тепловая энергия. Поэтому раздел химии, изучающий энергию химических реакций, исторически стал называться термохимией, а изменение энергии называется тепловым эффектом химической реакции и измеряется в килоджоулях на моль образовавшегося или сгоревшего вещества. Так как в зависимости от условий, в которых протекает химическая реакция, возможно выделение или поглощение работы расширения газов (p=co s ), то различают тепловой эффект реакции при (p=co s ) Qp и тепловой эффект реакции при (v=co s ) Qv, хотя разница между ними обычно невелика. ЗАКОНЫ ТЕРМОХИМИИ Первый закон термохимии (Лавуазье и Лаплас, 1780—1784): тепловой эффект образования данного соединения в точности равен, но обратен по знаку тепловому эффекту его разложения. Из закона Лавуазье—Лапласа следует невозможность построить вечный двигатель I рода, использующий энергию химических реакций. Второй закон термохимии (Г. И. Гесс, 1840): тепловой эффект химической реакции не зависит от характера и последовательности отдельных ее стадий и определяется только начальными и конечными продуктами реакции и их физическим состоянием (при p=co s или при v=co s ). Г. И. Гесс первый принял во внимание физическое состояние реагирующих веществ, так как теплоты изменения агрегатных состояний веществ накладываются на тепловой эффект реакции, увеличивая или уменьшая его. Утверждение закона Гесса о том, что тепловой эффект процесса не зависит от его отдельных стадий и их последовательности, дает возможность рассчитывать тепловые эффекты реакций для случаев, когда их определить экспериментально или очень трудно, или вообще невозможно.

Если градиент движущих сил (Т, U, h и т. д.) равен нулю, то и работа, совершающаяся в процессе, равна нулю, а система будет находиться в состоянии равновесия: при Т1=Т2 закончится теплообмен: электрический заряд не осуществляет работы, если U1 = U2 турбины не работают при спущенной плотине; химическая реакция будет достигать равновесия, когда количество полученных конечных продуктов равно количеству разложившихся конечных продуктов на первоначальные за единицу времени. Исследуя выражение для КПД тепловой машины, Клаузиус ввел новую термодинамическую функцию, которую назвал энтропией. В самом деле: или отсюда или (15) Таким образом, при проведении цикла в идеальной тепловой машине (цикл Карно) и получении механической работы отношение полученной теплоты к температуре нагретого источника равно такому же отношению для холодного источника. Так как Q является в уравнении (15) приращением энергии, то можно это отношение записать в дифференциальной форме для элементарных циклов: суммируя изменения по всему циклу тепловой машины, можно записать (16) где dQ — приращение теплоты; Т — соответствующая температура;— интеграл по замкнутому контуру. Подынтегральное выражение Клаузиус принял за приращение новой функции S — энтропии: или (17) Энтропия представляет собой функцию параметров состояния (р,v,Т) и может оценить направление процесса в системе, стремящейся к равновесию, так как для идеального или равновесного процесса ее изменение равно нулю: dS=0. В самом деле, заменяя dQ на изменение внутренней энергии и работы dQ=dU pdv, можно записать (18) Если U=co s и v = co s , то в идеальном процессе dS=0, что, по существу, определяет равновесие системы (обратимый процесс), и в этом случае энтропия стремится к максимальному значению: S?Smax. Приращение энтропии определяется развитием необратимых процессов, протекающих самопроизвольно, которые прекращаются только при достижении равновесия в системе. Однако требование постоянства внутренней энергии системы исключает возможность использования только одной этой функции для исследования химических реакций, при которых внутренняя энергия веществ, составляющих систему, неизбежно меняется. Гиббс предложил другую термодинамическую функцию, исследуя которую можно определить направление процессов в системе, стремящейся к равновесию при =co s и p=co s : G=H? S (19) где G — энергия Гиббса (или термодинамический потенциал, как назвал эту функцию Гиббс); Н—энтальпия; S—энтропия; Т— абсолютная температура. Опуская все математические исследования термодинамической функции G, можно считать, что функция G для системы, стремящейся к равновесию, убывает, при достижении равновесия она принимает минимальное значение (G?Gmi ), а ее приращение обращается в нуль (?G=0). ЭНТРОПИЯ Наиболее информативной термодинамической функцией в уравнении (19) является энтропия S. Значение энтропии легко определить только для состояния идеального газа. Используем для вычисления S уравнение (18), где dU — изменение внутренней энергии, равное для идеального газа Сvd т.е. теплоемкости при постоянном объеме, умноженной на приращение температуры: pdv — приращение работы, которое можно представить как, заменив р на R /v.

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Большой энциклопедический словарь (Часть 2, ЛЕОНТЬЕВ - ЯЯТИ)

ПАРТИЙНОСТЬ - 1) принадлежность человека к политической партии. 2) Принципы поведения людей, направленность политической и идеологической деятельности. ПАРТИНГТОН (Partington) Джеймс Риддик (1886-1965) - английский химик, академик Международной академии истории науки (1957). Известен в основном работами по истории химии, главная из них четырехтомная "История химии" (1961-70). Занимался также химической термодинамикой, вопросами очистки газов и окисления азота. Автор пятитомного "Расширенного курса физической химии" (1949-54). ПАРТИТА (итал. partita - букв. - разделенная на части), в музыке 17-18 вв. род органных вариаций на хоральную мелодию, а также разновидность сюиты. ПАРТИТУРА (итал. partitura - букв. - разделение, распределение), нотная запись многоголосного музыкального произведения, в которой одна над другой даны в определенном порядке партии всех голосов. В партитуре для симфонического оркестра следуют партии инструментов (сверху вниз): деревянные духовые, медные духовые, ударные и струнные смычковые. ПАРТИЯ (от лат. pars - род. п. partis - часть, участие, доля), 1) группа людей, объединенная общностью идей, интересов (см

скачать реферат Возникновение и развитие науки химии

Благодаря этому атомистическая теория увидела свет раньше, чем она была опубликована самим автором. Джон Дальтон является создателем химической атомистики; он впервые, использует представления об атомах, объяснил состав различных химических веществ, определил их относительные и молекулярные веса. И тем не менее в начале XIXв. атомно-молекулярное учение в химии с трудом пробивало себе дорогу. Понадобилось ещё полстолетия для его окончательной победы. На этом пути был сформулирован ряд количественных законов (закон постоянных отношений Пруста, закон объёмных отношений Гей-Люссака, закон Авагадро, согласно которому при одинаковых условиях одинаковые объёмы всех газов содержат одно и то же число молекул), которые получали объяснения с позиций атомно-молекулярных представлений. Для экспериментального обоснования атомистики и её внедрения в химию много усилий приложил Й. Б. Берцелиус. Окончательную победу атомно-молекулярное учение (и опирающиеся на него способы определения атомных и молекулярных весов) одержало на 1-м Международном конгрессе химиков (1860). В 50-70-е гг. XIXв. на основе учения о валентности и химической связи была разработана теория химического строения (А. М. Бутлеров, 1861), которая обусловила огромный успех органического синтеза и возникновение новых отраслей хим. промышлености (производство красителей, медикаментов, нефтепереработка и др. ), а в теоретическом плане открыла путь построению теории пространственного строения органических соединений- стереохимии (Дж. Г. Вант-Гофф, 1874). Во второй половине XIXв. складываются физическая химия, химическая кинетика- учение о скоростях хим. реакций, теория электролитической диссоциации, химическая термодинамика.

Набор детской складной мебели "Маленькая принцесса".
Комплект складной. Подходит для кормления, игр и обучения. Поверхность столешницы ламинированная с нанесением ярких познавательных
1795 руб
Раздел: Наборы детской мебели
Коробка картонная для цветов с люверсами и ручками "Лайм", 30x30x20 см.
Коробка картонная для цветов с люверсами и ручками. Размер: 30x30x20 см.
493 руб
Раздел: Коробки
Пробковая доска в деревянной раме MDF, 40x30 см.
Пробковые доски применяются в качестве персональных информационных дисплеев. На их поверхность с помощью кнопок или булавок можно
424 руб
Раздел: Прочее
 Большой энциклопедический словарь (Часть 2, ЛЕОНТЬЕВ - ЯЯТИ)

На Сырдарье - Кайраккумская, Фархадская, Чардаринская ГЭС и вдхр., Кзыл-Ординская плотина. Промысел рыбы. Судоходна на отдельных участках до г. Бекабада. Главные города: Ходжент (Таджикистан), Кзыл-Орда (Казахстан). СЫРКИН Яков Кивович (1894-1974) - российский физикохимик, академик АН СССР (1964). Труды по химической термодинамике и кинетике, теории химической связи, экспериментальные исследования строения и реакционной способности молекул (дипольные моменты, колебательные спектры, электрический парамагнитный резонанс и др.). Государственная премия СССР (1943). СЫРКУС (Syrkus) Шимон (1893-1964) - польский архитектор. Представитель функционализма. Один из создателей польской архитектурной школы 20 в. (район Коло в Варшаве, 1947-62). СЫРМАК - узорчатый казахский ковер, сшитый из кусков войлока разных цветов, один из главных предметов убранства казахской юрты. СЫРОВАТСКИЙ Сергей Иванович (1925-79) - российский физик и астрофизик. Сформулировал уравнения магнитной гидродинамики в виде законов сохранения. Развивал теорию синхротронного излучения, исследовал динамику космической плазмы

скачать реферат Методология наук

Это была первая промежуточная отрасль науки, связавшая собой физику (оптику), химию и астрономию. В результате такого их связывания возникла астрофизика и в какой-то степени астрохимия. В общем случае возникновение таких наук промежуточного характера может иметь место, когда метод одной науки в качестве нового средства исследования применяется к изучению предмета другой науки. Так, в наше время возникла радиоастрономия как часть современной астрофизики. Вскоре после спектрального анализа возникла химическая термодинамика, соединившая химию с ранее уже связанными между собой механикой и учением о теплоте (в виде термодинамики). Затем к ним присоединилось учение о разбавленных растворах и электрохимия, в результате чего возникла физическая химия. Более подробно я хотела бы рассказать об истории биофизики. Биофизика как наука начала формироваться еще в XIXв. Многие физиологи того периода уже работали над вопросами, которые в настоящее время являются объектом биофизического исследования. Так, например, выдающийся физиолог И.М.Сеченов (1829-1905) являлся пионером в этой области. Используя методы физической химии и математический аппарат, он изучал динамику дыхательного процесса и установил при этом количественные законы растворимости газов в биологических жидкостях.

 Большой энциклопедический словарь (Часть 2, ЛЕОНТЬЕВ - ЯЯТИ)

Первое начало термодинамики, Второе начало термодинамики, Третье начало термодинамики). Термодинамика возникла в 1-й пол. 19 в. в связи с развитием теории тепловых машин (С. Карно) и установлением закона сохранения энергии (Ю. Р. Майер, Дж. Джоуль, Г. Гельмгольц). Основные этапы развития термодинамики связаны с именами Р. Клаузиуса и У. Томсона (формулировки второго начала термодинамики), Дж. Гиббса (метод термодинамических потенциалов), В. Нернста (третье начало термодинамики) и др. Различают химическую термодинамику, техническую термодинамику и термодинамику различных физических явлений. ТЕРМОДИНАМИКА НЕРАВНОВЕСНЫХ ПРОЦЕССОВ - раздел физики, изучающий неравновесные процессы (диффузию, вязкость, термоэлектрические явления и др.) на основе общих законов термодинамики. Для количественного изучения неравновесных процессов, в частности определения их скоростей в зависимости от внешних условий, составляются уравнения баланса массы, импульса, энергии, а также энтропии для элементарных объемов системы, и эти уравнения исследуются совместно с уравнениями рассматриваемых процессов

скачать реферат Горная порода - термодинамическая система

Первое начало термодинамики связано с законом сохранения и превращения энергии, т.е. является частным выражением этого закона и как многие общие законы природы устанавливаются опытным путем и носит эмпирический характер. Одним из доказательств справедливости закона сохранения энергии и первого начала термодинамики была экспериментально установленная Джоулем эквивалентность тепла и работы в круговых процессах. В химической термодинамике (минералогической) из понятия механической работы и работы вообще исключается изменение энергии тела вследствие его перемещения в пространстве. С точки зрения кинетической теории строения материи теплота представляет собой микрофизическую форму передачи энергии. Работа представляет собой макрофизическую форму передачи энергии. Изменение энергии определяется начальным и конечным состоянием системы и не зависит от характера протекания процесса. Иными словами кинетическая энергия – есть функция состояния системы. Теплота и работа не являются параметрами состояния данной системы, они не могут присутствовать в ней в том или ином количестве. Они появляются при переходе из одного состояния в другое.

скачать реферат Особенности отбора предметного содержания при изучении химии в средней школе

Критерий целостности содержания. Учебный предмет должен отражать все основные направления развития науки, культуры, общественной жизни, всех аспектов воспитания. Современные химические исследования, как показал О. С. Зайцев , ведутся в области четырех основных учений — периодичности, строения вещества, химической кинетики и химической термодинамики. Критерий научной общепризнанности. Спорные вопросы можно обсуждать с учащимися, но в основы науки они входить не должны. В подлежащее обязательному усвоению содержание включаются только такие вопросы и научные трактовки, которые уже не встречают разночтений у подавляющего большинства ученых. 3.Критерий научной значимости, отражающий широту применения научных знаний. Они могут носить всеобщий, общийи частный характер. Знания, носящие всеобщий характер, дол-ны включаться в первую очередь. На этом основании в действующую программу по химии включен закон о сохранении и превращении энергии. Этим объясняется и тот факт, что из двух самых первых программ по химии, разработанных в Москве под руководством П. П. Лебедева и в Петрограде под руководством В. Н. Верховского, была в конце концов принята петроградская программа, включающая изучение периодического закона, имеющего всеобщее научное значение, обладающего универсальностью.

скачать реферат Кинетика химических реакций

Химическая термодинамика позволяет вычислить тепловой эффект данной реакции, а также предсказать, осуществима ли данная реакция и ее состояние равновесия, т. е. предел, до которого она может протекать. Для этого необходимо иметь данные о термодинамических параметрах всех компонентов только в начальном и конечном состояниях системы. Но для практики нужно знать не только возможность осуществления данной реакции, но и скорость ее протекания. Ответ на этот вопрос дает химическая кинетика. Для получения кинетических закономерностей должны быть известны не только начальное и конечное состояния системы, но и путь, по которому протекает реакция, а он обычно заранее неизвестен. Поэтому получить кинетические закономерности сложнее, чем термодинамические. Зная эти закономерности (математическую модель) изучаемой химической реакции и ее кинетические параметры, можно рассчитать ее скорость н оптимальные условия проведения в промышленном реакторе. С исследованиями кинетики химических реакций связаны важнейшие направления современной химии и химической промышленности: разработка рациональных принципов управления химическими процессами; стимулирование полезных и торможение и подавление нежелательных химических реакций; создание новых и усовершенствование существующих процессов и аппаратов в химической технологии; изучение поведения химических продуктов, материалов и изделий из них в различных условиях применения и эксплуатации.

скачать реферат Химическая термодинамика

1. Основные понятия и законы химической термодинамики 1.1 Основные понятия Термодинамической системой называют тело или группу тел, находящихся в энергетическом взаимодействии и мысленно или физически отделённых от окружающих тел, которые называются внешней или окружающей средой. Классификация систем: 1) по возможности тепло- и массообмена: изолированные, закрытые, открытые. Изолированная система не обменивается с окружающей средой ни веществом, ни энергией. Закрытая система обменивается с окружающей средой энергией, но не обменивается веществом. Открытая система обменивается с окружающей средой и веществом и энергией. Понятие изолированной системы используется в физической химии как теоретическое. 2) по внутренней структуре и свойствам: гомогенные и гетерогенные. Гомогенной называется система, внутри которой нет поверхностей, делящих систему на части, различные по свойствам или химическому составу. Примерами гомогенных систем являются водные растворы кислот, оснований, солей; смеси газов; индивидуальные чистые вещества.

Детская горка, розовая.
Стабильная и прочная пластиковая горка с пологим спуском. Горка характеризует высокое качество и непревзойденный дизайн! Изготовлена из
1941 руб
Раздел: Горки
Детский шампунь-гель для волос и тела Weleda "Апельсин", 150 мл.
Натуральное средство 2 в 1 с нежнейшей кремовой текстурой и растительной моющей основой бережно очищает и ухаживает за чувствительной
542 руб
Раздел: Гели, мыло
Настольная подставка "Berlingo BR", вращающаяся.
Комбинированная черная/красная.
388 руб
Раздел: Подставки, лотки для бумаг, футляры
скачать реферат Химия жизни

Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи. В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обес­печило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия грани­чит, с одной стороны, с макроскопической физикой — термо­динамикой, физикой сплошных сред, а с другой — с микро­физикой — статической физикой, квантовой механикой. Общеизвестно, сколь плодотворными эти контакты оказа­лись для химии. Термодинамика породила химическую термодинамику — учение о химических равновесиях. Статиче­ская физика легла в основу химической кинетики — учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Менделеева. Со­временная теория химического строения и реакционной спо­собности — это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превра­щений. Еще одним свидетельством плодотворности влияния фи­зики на химическую науку является все расширяющееся применение физических методов в химических исследовани­ях.

скачать реферат Развитие наук о неорганической природе в ХVIII-ХIХ веках

Следующий важный шаг в развитии научной химии был сделан Дж. Дальтоном (1766-1844), ткачом и школьным учителем в Манчестере. Изучая газы, он попытался рассматривать их свойства как результат взаимного отталкивания атомов. Это заставило его задуматься над возможными соотношениями атомов в различного рода газах. И тем не менее атомно-молекулярное учение в химии в начале ХIХ века с трудом пробивало себе дорогу. Понадобилось еще полстолетия для его окончательной победы. На этом пути был сформулирован ряд количественных законов (закон постоянных отношений (Пруст), закон объемных отношений (Гей-Люссак), закон Авогадро (при одинаковых условиях одинаковые объемы всех газов содержат одно и то же число молекул)), которые получали объяснение с позиций атомно-молекулярных представлений. Окончательную победу атомно-молекулярная теория (и опирающиеся на нее способы определения атомных и молекулярных весов) одержала на 1-м Международном конгрессе химиков (1860). В 50-70-е годы ХIХ века на основе учения о валентности и химической связи были разработаны теория химического строения (Бутлеров, 1861 г.) и открыта периодическая система элементов (Менделеев, 1869 г.). Первая обусловила огромный успех органического синтеза и возникновение новых отраслей химический промышленности (производство красителей, медикаментов, нефтепереработка и др.): в теоретическом плане она открыла путь построению теории пространственного строения органических соединений - стереохимии (Вант-Гоффф, 1874 г.). Во второй половине ХIХ века складывается физическая химия, химическая кинетика - учение о скоростях химических реакций (Бертло и др.), создание теории электролитической диссоциации (Аррениус), химической термодинамики (на основе работ Гиббса, Нерста, Вант-Гоффа).

скачать реферат Управление природными взаимодействиями

Механическое обращение планеты вокруг движущегося Солнца, происходящее в переменных термодинамических условиях по строго фиксированной (т.е. – квантованной) во времени и пространстве винтовой эллиптической траектории, есть не что иное, как наблюдаемое нами тысячелетиями изо дня в день проявление этого природного единства. В работах автора показано, что дифференциальные законы механики и химической термодинамики образуют систему изначально квантовых законов химической термомеханики в ньютоновской форме записи, описывающих одновременные изменения параметров, присущих всем указанным взаимодействиям. Это достигается введением в законы механики безразмерного параметра, связывающего воедино пространство, время, а также химический состав, физико-химические свойства и термодинамическое состояние вещества. На протонно-электронном уровне строения вещества этот параметр является управляющим и управляемым одновременно. Он зависит только от величины главного квантового числа и определяет форму траектории тела в зависимости от термодинамического состояния тела или окружающей среды (т.е. является функцией давления и абсолютной температуры).

скачать реферат Исторический обзор основных этапов развития химии

Во второй половине XIX в. складываются физическая химия, химическая кинетика - учение о скоростях химических реакций, теория электролитической диссоциации, химическая термодинамика. Таким образом, в химии XIX в. сложился новый общий теоретический подход - определение свойств химических веществ в зависимости не только от состава, но и от структуры. Развитие атомно-молекулярного учения привело к идее о сложном строении не только молекулы, но и атома. В начале ХГХ в. эту мысль высказал английский ученый У. Праут на основе результатов измерений, показывавших, что атомные веса элементов кратны атомному весу водорода. Праут предложил гипотезу, согласно которой атомы всех элементов состоят из атомов водорода. Новый толчок для развития идеи о сложном строении атома дало великое открытие Д. И. Менделеевым периодической системы элементов, которая наталкивала на мысль о том, что атомы не являются неделимыми, что они обладают структурой и их нельзя считать первичными материальными образованиями. 4. Зарождение современной химии и ее проблемы в 21 веке Конец средних веков отмечен постепенным отходом от оккультизма, спадом интереса к алхимии и распространением механистического взгляда на устройство природы. Ятрохимия. Совершенно иных взглядов на цели алхимии придерживался Парацельс.

скачать реферат Моя профессиональная деятельность на инженерном уровне (специальность 220200)

Вселенной в целом как физическом объекте и ее эволюции; - о фундаментальном единстве естественных наук, незавершенности естествознания и возмож­ности его дальнейшего развития; - о дискретности и непрерывности в природе; - о соотношении порядка и беспорядка в природе, упорядоченности строения объектов, перехо­дах в не­упорядоченное состояние и наоборот; - о динамических и статистических закономерностях в природе; - о вероятности как объективной характеристике природных систем; - об измерениях и их специфичности в различных разделах естествознания; - о фундаментальных константах естествознания; - о принципах симметрии и законах сохранения; - о соотношениях эмпирического и теоретического в познании; - о состояниях в природе и их изменениях со временем; - об индивидуальном и коллективном поведении объектов в природе; - о времени в естествознании; - об основных химических системах и процессах; - о взаимосвязи между свойствами химической системы, природой веществ и их реакционной способностью; - о методах химической идентификации и определения веществ; - об особенностях биологической формы организации материи, принципах воспроизводства и развития живых систем; - о биосфере и направлении ее эволюции; - о целостности и гомеостазе живых систем; - о взаимодействии организма и среды, сообществе организмов, экосистемах; - об экологических принципах охраны природы и рациональном природопользовании, перспек­тивах соз­дания не разрушающих природу технологий; - о новейших открытиях естествознания, перспективах их использования для построения техни­ческих устройств; - о последствиях своей профессиональной деятельности с точки зрения единства биосферы и биосоциаль­ной природы человека; знать и уметь использовать: - основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, статисти­ческой физики и термодинамики, химической термодинамики и кинетики, экологии; - методы теоретического и экспериментального исследования в физике, химии, экологии; - уметь оценивать численные порядки величин, характерных для различных разделов естество­знания.

Магнитный театр "Репка".
Увлекательное театральное представление с любимыми героями русской народной сказки «Репка» и вашим ребенком в роли главного режиссера. 10
308 руб
Раздел: Магнитный театр
Самоклеящиеся этикетки, A4, 105x70 мм, 8 этикеток на листе, 100 листов.
Формат: А4. Размер: 105x70 мм. В комплекте: 100 листов (на 1 листе 8 этикеток).
500 руб
Раздел: Бейджи, держатели, этикетки
Рюкзак детский "Сова", 32х26х10 см.
Рюкзак детский. Размер: 32х26х10 см. Состав: текстиль, ПВХ, металл. Не предназначено для детей младше 3 лет.
319 руб
Раздел: Детские
скачать реферат Основные открытия в естествознании

Три великих открытия (0-я треть 00 в ) — клеточная теория учение о превращении энергии и дарвинизм — нанесли окончательный удар по старой метафизике Затем последовали открытия раскрывавшие диалектику природы полнее: создание теории химического строения органических соединений (А М Бутлеров 0000) периодической системы элементов (Д И Менделеев 0000) химической термодинамики (Я Х Вант-Гофф Дж Гиббс) основ научной физиологии (И М Сеченов 0000) электромагнитной теории света (Дж К Максвелл 0000) Но делая открытия подтверждающие диалектику естествоиспытатели продолжали мыслить метафизически « Этот конфликт между достигнутыми результатами и укоренившимся способом мышления » составил основное противоречие естествознания данного периода — разрыв между объективной и субъективной его сторонами его содержанием (его открытиями) и формой мышления самих учёных Период «новейшей революции» в естествознании начался в 00 в форсируется развитие прежде всего физики (атомная энергия радиолокация радиоэлектроника средства связи автоматика и кибернетика квантовая электроника — лазеры электронная оптика и т д )

скачать реферат Билеты для подготовки к экзамену по химии - декабрь 2000

9) Что представляют собой катализаторы и ингибиторы? 10) Перечислите основные положения теории химического строения органических соединений А.Н. Бутлерова. Зав. кафедрой Экзаменационный билет по предмету ХИМИЯ Билет № 4 1) Приведите примеры сильных, слабых и средних кислот. 11) Дайте определение цепным химическим реакциям. Приведите примеры. 12) Назовите и охарактеризуйте различные виды стекла. 13) Что представляют собой нитросоединения? Как называют процесс введения нитрогруппы в органические соединения? Зав. кафедрой Экзаменационный билет по предмету ХИМИЯ Билет № 5 1) Какие вещества называются оксидами? Приведите примеры оксидов. 14) Дайте определение химической термодинамики. 15) Что представляет собой керамика? 16) Что представляют собой мыла? Зав. кафедрой Экзаменационный билет по предмету

скачать реферат Термодинамика

СОДЕРЖАНИЕВВЕДЕНИЕГЛАВА 1 ОСНОВНЫЕ ПОНЯТИЯ И ИСХОДНЫЕ ПОЛОЖЕНИЯ ТЕРМОДИНАМИКИ 1. Закрытые и открытые термодинамические системы. 2. Нулевое начало термодинамики. 3. Первое начало термодинамики. 4. Второе начало термодинамики. 5. Обратимые и необратимые процессы. 6. Энтропия. 7. Третье начало термодинамики.ГЛАВА 2 ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ СИНЕРГЕТИКИ. САМООРГАНИЗАЦИЯ РАЗЛИЧНЫХ СИСТЕМ. 1. Общая характеристика открытых систем. 2. Диссипативные структуры. 3. Самоорганизация различных систем и синергетики. 4. Примеры самоорганизации различных систем. 5. Физические системы. 6. Химические системы. 7. Биологические системы. 8. Социальные системы. Постановка задачи.ГЛАВА 3 АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ СИСТЕМ. 1. Ячейки Бенара. 2. Лазер, как самоорганизованная система. 3. Биологическая система. 4. Динамика популяций. Экология. 5. Система «Жертва - Хищник».ЗАКЛЮЧЕНИЕ.ЛИТЕРАТУРА. ВВЕДЕНИЕ. Наука зародилась очень давно, на Древнем Востоке, и затем интенсивно развивалась в Европе. В научных традициях долгое время оставался недостаточно изученным вопрос о взаимоотношениях целого и части. Как стало ясно в середине 20 века часть может преобразовать целое радикальным и неожиданным образом.

скачать реферат Современные теории происхождения жизни

Однако кроме проблемы температуры среды, в которой зародилась жизнь, существует и другая, более важная проблема: проблема понимания существа и причинности процессов, приводящих к возникновению простейших форм жизни. Путь к решению данной проблемы на взгляд автора пролегает через комплекс идей и концепций, рассматривающих явления самоорганизации природных систем. В основании этого направления лежит сформулированная в рамках неравновесной термодинамики теория диссипативных структур. К классу диссипативных структур относятся все без исключения биологические и социальные системы, а также некоторые химические и физические системы, в которых существуют незатухающие динамические явления. Фактически в рамках теории диссипативных структур сформулирован целый ряд универсальных законов появления, развития и отмирания природных систем, которые справедливы в частности и для широкого класса биологических систем. Кратким итогом сказанного выше являются три основных требования к среде, в которой зародилась жизнь: 1. Среда должна быть высокотемпературной; 2.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.