телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы
Молочный гриб необходим в каждом доме как источник здоровья и красоты

РАСПРОДАЖАВидео -5% Товары для детей -5% Товары для спорта, туризма и активного отдыха -5%

все разделыраздел:Математика

Роль теории дифференциальных уравнений в современной математике и ее приложениях

найти похожие
найти еще

Ручка "Шприц", желтая.
Необычная ручка в виде шприца. Состоит из пластикового корпуса с нанесением мерной шкалы. Внутри находится жидкость желтого цвета,
25 руб
Раздел: Оригинальные ручки
Гуашь "Классика", 12 цветов.
Гуашевые краски изготавливаются на основе натуральных компонентов и высококачестсвенных пигментов с добавлением консервантов, не
175 руб
Раздел: 7 и более цветов
Брелок LED "Лампочка" классическая.
Брелок работает в двух автоматических режимах и горит в разных цветовых гаммах. Материал: металл, акрил. Для работы нужны 3 батарейки
131 руб
Раздел: Металлические брелоки
Можно сказать, что необходимость решать дифференциальные уравнения для нужд механики, то есть находить траектории движений, в свою очередь, явилась толчком для создания Ньютоном нового исчисления. Органическая связь физического и математического ясно проявилась в методе флюксий Ньютона. Законы Ньютона представляют собой математическую модель механического движения. Через обыкновенные дифференциальные уравнения шли приложения нового исчисления к задачам геометрии и механики; при этом удалось решить задачи, которые в течение долгого времени не поддавались решению. В небесной механике оказалось возможным не только получить и объяснить уже известные факты, но и сделать новые открытия (например, открытие Леверье в 1846 году планеты Нептун на основе анализа дифференциальных уравнений). Обыкновенные дифференциальные уравнения возникают тогда, когда неизвестная функция зависит лишь от одной независимой переменной. Соотношение между независимой переменной, неизвестной функцией и ее производными до некоторого порядка составляет дифференциальное уравнение. В настоящее время теория обыкновенных дифференциальных уравнений представляет собой богатую, широко разветвленную теорию. Одними из основных задач этой теории являются существование у дифференциальных уравнений таких решений, которые удовлетворяют дополнительным условиям (начальные данные Коши, когда требуется определить решение, принимающее заданные значения в некоторой точке и заданные значения производных до некоторого конечного порядка, краевые условия и другие), единственность решения, его устойчивость. Под устойчивостью решения понимают малые изменения решения при малых изменениях дополнительных данных задачи и функций, определяющих само уравнение. Важными для приложений являются исследование характера решения, или, как говорят, качественного поведения решения, нахождение методов численного решения уравнений. Теория должна дать в руки инженера и физика методы экономного и быстрого вычисления решения. Уравнения с частными производными начали изучаться значительно позже. Нужно подчеркнуть, что теория уравнений с частными производными возникла на основе конкретных физических задач, приводящих к исследованию отдельных уравнений с частными производными, которые получили название основных уравнений математической физики. Изучение математических моделей конкретных физических задач привело к созданию в середине XVIII века новой ветви анализа - уравнений математической физики, которую можно рассматривать как науку о математических моделях физических явлений. Основы этой науки были заложены трудами Д'Аламбера (1717 - 1783), Эйлера (1707 - 1783), Бернулли (1700 - 1782), Лагранжа (1736 - 1813), Лапласа (1749 - 1827), Пуассона (1781 - 1840), Фурье (1768 - 1830) и других ученых. Интересно то, что многие из них были не только математиками, но и астрономами, механиками, физиками. Разработанные ими при исследовании конкретных задач математической физики идеи и методы оказались применимыми к изучению широких классов дифференциальных уравнений, что и послужило в конце XIX века основой для развития общей теории дифференциальных уравнений.

Теоремы о существовании аналитического (то есть представимого в виде степенного ряда) решения для обыкновенных дифференциальных уравнений, а также для линейных систем уравнений с частными производными были доказаны ранее Коши (Cauchy, 1789 - 1857). Эти вопросы рассматривались им в нескольких статьях. Но работы Коши не были известны Вейерштрассу, который предложил С.В. Ковалевской изучить вопрос о существовании аналитических решений уравнений с частными производными в качестве докторской диссертации. (Отмечу, что Коши опубликовал 789 статей и большое число монографий; его наследие огромно, поэтому неудивительно, что некоторые его результаты могли остаться некоторое время незамеченными.) С.В. Ковалевская в своей работе опиралась на лекции Вейерштрасса, где рассматривалась задача с начальными условиями для обыкновенных дифференциальных уравнений. Исследование Ковалевской придало вопросу о разрешимости задачи Коши для уравнений и систем с частными производными в определенном смысле завершающий характер. Пуанкаре высоко ценил эту работу Ковалевской. Он писал: "Ковалевская значительно упростила доказательство и придала теореме окончательную форму". Теорема Ковалевской занимает важное место в современной теории уравнений с частными производными. Ей, пожалуй, принадлежит одно из первых мест по числу применений в различных областях теории уравнений с частными производными: теорема Хольмгрена о единственности решения задачи Коши, теоремы существования решения задачи Коши для гиперболических уравнений (Шаудер, Петровский), современная теория разрешимости линейных уравнений и многие другие результаты используют теорему Ковалевской. Важным достижением теории уравнений с частными производными явилось создание на рубеже XIX века теории интегральных уравнений Фредгольма и решение основных краевых задач для уравнения Лапласа. Можно считать, что основные итоги развития теории уравнений с частными производными XIX века подведены в учебнике Э. Гурса "Курс математического анализа", изданном в 20-е годы нашего века. Следует отметить большой вклад, который внесли в теорию дифференциальных уравнений и математическую физику труды М.В. Остроградского по вариационным методам, труды А.М. Ляпунова по теории потенциала и по теории устойчивости движения, труды В.А. Стеклова по обоснованию метода Фурье и другие. Тридцатые и последующие годы нашего века были периодом бурного развития общей теории уравнений с частными производными. В работах И.Г. Петровского были заложены основы общей теории систем уравнений с частными производными, выделены классы систем уравнений, которые в настоящее время носят название эллиптических, гиперболических и параболических по Петровскому систем, исследованы их свойства, изучены характерные для них задачи. В теорию уравнений с частными производными все глубже стали проникать идеи функционального анализа. Было введено понятие обобщенного решения как элемента некоторого функционального пространства. Идея обобщенного решения систематически проводилась в работах С.Л. Соболева. В связи с исследованием дифференциальных уравнений Соболевым в 30-годы была создана теория обобщенных функций, играющая исключительно важную роль в современной математике и физике. С.Л. Соболевым была построена теория вложения функциональных пространств, которые в настоящее время носят название пространств Соболева. А.Н. Тихоновым была построена теория некорректных задач.

Однако бывает и так, что математическое исследование, рожденное в рамках самой математики, через значительное время после его проведения находит приложение в конкретных физических проблемах в результате их более глубокого изучения. Таким примером может служить задача Трикоми для уравнений смешанного типа, которая спустя более четверти века после ее решения нашла важные применения в задачах современной газовой динамики при изучении сверхзвуковых течений газа. Ф. Клейн в книге "Лекции о развитии математики в XIX столетии" писал, что "математика сопровождала по пятам физическое мышление и, обратно, получила наиболее мощные импульсы со стороны проблем, выдвигавшихся физикой". Второй особенностью теории дифференциальных уравнений является ее связь с другими разделами математики, такими, как функциональный анализ, алгебра и теория вероятностей. Теория дифференциальных уравнений и особенно теория уравнений с частными производными широко используют основные понятия, идеи и методы этих областей математики и, более того, влияют на их проблематику и характер исследований. Некоторые большие и важные разделы математики были вызваны к жизни задачами теории дифференциальных уравнений. Классическим примером такого взаимодействия с другими областями математики являются исследования колебаний струны, проводившиеся в середине XVIII века. Уравнение колебаний струны было выведено Д'Аламбером в 1747 году. Он получил также формулу, которая дает решение этого уравнения: u( , x) = F1(x ) F2(x - ), где F1 и F2 - произвольные функции. Эйлер получил для него формулу, которая дает для него решение с заданными начальными условиями (задача Коши). (Эта формула в настоящее время называется формулой Д'Аламбера.) Возник вопрос, какие функции считать решением. Эйлер полагал, что это может быть произвольно начерченная кривая. Д'Аламбер считал, что решение должно записываться аналитическим выражением. Д. Бернулли утверждал, что все решения представляются в виде тригонометрических рядов. С ним не соглашались Д'Аламбер и Эйлер. В связи с этим спором возникли задачи об уточнении понятия функции, важнейшего понятия математического анализа, а также вопрос об условиях представимости функции в виде тригонометрического ряда, который позднее рассматривали Фурье, Дирихле и другие крупные математики и изучение которого привело к созданию теории тригонометрических рядов. Как известно, потребности развития теории тригонометрических рядов привели к созданию современной теории меры, теории множеств, теории функций. При изучении конкретных дифференциальных уравнений, возникающих в процессе решения физических задач, часто создавались методы, обладающие большой общностью и применявшиеся без строгого математического обоснования к широкому кругу математических проблем. Такими методами являются, например, метод Фурье, метод Ритца, метод Галёркина, методы теории возмущений и другие. Эффективность применения этих методов явилась одной из причин попыток их строгого математического обоснования. Это приводило к созданию новых математических теорий, новых направлений исследований. Так возникла теория интеграла Фурье, теория разложения по собственным функциям и, далее, спектральная теория операторов и другие теории.

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Новая философская энциклопедия. Том третий

К вопросу об истоках и роли современного пацифизма на Западе. — В кн.: Вопрос всех вопросов. М., 1985. Л. Н. Митрохин 215 ПЕАНО ПЕАНО (Реапо) Джузеппе (27 августа 1857, Кунео — 20 апреля 1932, Турин) — итальянский математик и логик, профессор математики Туринского университета (1890—1930) и Военной академии (1887—1901). В круг его научных интересов входят теория дифференциальных уравнений, теория множеств и функций, в частности ему принадлежат уточнение понятия меры множества, пример непрерывной Жордановой кривой, проходящей через каждую точку данного квадрата (кривая Пеано), анализ общего понятия функции, определение функции множества. Пеано внес заметный вклад в развитие дедуктивно-аксиоматического метода. В линейной алгебре он первым дал аксиоматическое определение л-мерного линейного пространства (1888), в арифметике сформулировал систему аксиом (аксиомы Пеано, 1891), отталкиваясь от системы Дедекинда (1888), осуществил аксиоматическое построение Евклидовой геометрии (1889). Пеано — один из создателей современной математической логики

скачать реферат Знакомство с топологией

Любая попытка окрасить только одну сторону листа Мёбиуса обречена на неудачу, так как у листа Мёбиуса всего одна сторона. Жук, ползущий по середине листа Мёбиуса (не пересекая края), вернется в исходную точку в положении «вверх ногами». При разрезании листа Мёбиуса по средней линии он не распадается на две части. Узлы. Узел можно представлять себе как запутанный кусок тонкой веревки с соединенными концами, расположенный в пространстве. Простейший пример – из куска веревки сделать петлю, пропустить один из ее концов сквозь петлю и соединить концы. В результате мы получим замкнутую кривую, которая остается топологически той же самой, как бы ее ни растягивать или скручивать, не разрывая и не склеивая при этом отдельные точки. Проблема классификации узлов по системе топологических инвариантов пока не решена. Заключение Топология – очень красивая наука. Она осуществляет связь геометрии с алгеброй. Ее идеи и образы играют ключевую роль практически во всей современной математике – в дифференциальных уравнениях, механике, комплексном анализе, алгебраической геометрии, функциональном анализе, математической и квантовой физике, теории представлений, и даже – в удивительно преображенном виде – в теории чисел, комбинаторике и теории сложности вычислений.

Масленка "Mayer & Boch".
Масленка с крышкой сохранит сливочное масло свежим как в холодильнике, так и на обеденном столе. Наша масленка будет украшением вашего
564 руб
Раздел: Сырницы, масленки, лимонницы
Машина-каталка "Джип" с мелодией.
Под сиденьем имеется багажник, куда можно положить формочки, совочек или какие-нибудь еще незаменимые на прогулке вещи. За сиденьем –
2199 руб
Раздел: Каталки
Кукла "Рапунцель" с аксессуарами.
У прекрасной Рапунцель такие длинные волосы! Как и любая девушка, принцесса очень любит за ними ухаживать. Помочь ей в этом очень просто,
837 руб
Раздел: Рапунцель
 В защиту науки (Бюллетень 3)

Вместо того, чтобы смиренно усваивать эту квинтэссенцию достижений современной физики на пользу своему научному мировоззрению, они считают его приглашением к собственному научному творчеству на сугубо качественном уровне, которое является всестатейно горделивым. Наконец, в-четвёртых, там, где современная теоретическая физика отходит от галилеевских методологических канонов доведения своих выводов «до числа» и обращается к качественному анализу, требуется своя математика, причём особо абстрактная и утончённая — абстрактная алгебра, топология, качественная теория дифференциальных уравнений и др. Об этом современные авторы «коперни-ковских переворотов в теоретической физике» обычно и не подозревают. Наконец, отметим, что псевдоинноваторы из параллельного мира «народной науки» никогда не понимали и сейчас не понимают главного: в науке ценится отнюдь не оригинальность мышления как таковая, но только оригинальная доказательность мышления. А в столь любезной им теоретической физике эта доказательность совпадает опять-таки с доказательностью математической

скачать реферат Синергетика

По замыслу своего создателя профессора Хакена, синергетика призвана играть роль своего рода метанауки, подмечающей и изучаюшей общий характер тех закономерностей и зависимостей, которые частные науки считали "своими". Поэтому синергетика возникает не на стыке наук в более или менее широкой или узкой пограничной области, а извлекает представляющие для нее интерес системы из самой сердцевины предметной области частных наук и исследует эти системы, не апеллируя к их природе, своими специфическими средствами, носящими общий ("интернациональный") характер по отношению к частным наукам. Физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов синергетики. Как и всякое научное направление, родившееся во второй половине ХХ века, синергетика возникла не на пустом месте. Ее можно рассматривать как преемницу и продолжательницу многих разделов точного естествознания, в первую очередь (но не только) теории колебаний и качественной теории дифференциальных уравнений.

 Большая Советская Энциклопедия (ГЕ)

Это видно уже в понятии совокупности всех вещественных чисел как числовой прямой, соединяющей арифметические свойства чисел с непрерывностью. Вот некоторые основные моменты влияния Г. в математике.   1) В возникновении и развитии анализа Г. наряду с механикой имела решающее значение. Интегрирование происходит от нахождения площадей и объемов, начатого ещё древними учёными, причём площадь и объём как величины считались определёнными; никакое аналитическое определение интеграла не давалось до 1-й половины 19 в. Проведение касательных было одной из задач, породивших дифференцирование. Графическое представление функций сыграло важную роль в выработке понятий анализа и сохраняет своё значение. В самой терминологии анализа виден геометрический источник его понятий, как, например, в терминах: «точка разрыва», «область изменения переменной» и т.п. Первый курс анализа, написанный в 1696 Г. Лопиталем, назывался: «Анализ бесконечно малых для понимания кривых линий». Теория дифференциальных уравнений в большей части трактуется геометрически (интегральные кривые и т.п.)

скачать реферат Комплекс статистических методов в помощь психологу

Почти одновременно в психологию и физику приходят вероятностные и статистические методы, теория дифференциальных уравнений, вариационное исчисление и другие. О том, чтобы математически описать деятельность мозга мечтал И.П. Павлов. Психология получила статус науки благодаря эксперименту (как естественно-научная дисциплина) и математической статистике. Благодаря проникновению в количественные свойства психических явлений, психология получила множество логических доказательств, которые явились научным обоснованием изучения психики человека. Именно поэтому математика как строгая логическая дисциплина необходима любому специалисту, практикующемуся в области психологии. Современная математическая статистика представляет собой большую и сложную систему знаний. Математическая статистика нужна психологу не только для проведения научных исследований, а постоянно в его повседневной работе. Статистики разработали целый комплекс простых методов, которые совершенно доступны любому квалифицированному специалисту психологу. Глава 1. Теоретическая часть 1.1 Основные понятия, используемые в математической обработке психологических данных1) признаки и переменные. 2) шкалы измерения. 3) Статистические гипотезы. 4) Статистические критерии. 1. Признаки и переменные - это измеряемые психологические явления.

скачать реферат Нестандартный анализ

Приложения нестандартного анализа в математике охватывают обширную область от топологии до теории дифференциальных уравнений, теории мер и вероятностей. Что касается внематематических приложений, то среди них мы встречаем даже приложения к математической экономике. Многообещающим выглядит использование нестандартного гильбертова пространства для построения квантовой механики. А в статистической механике становится возможным рассматривать системы из бесконечного числа частиц. Помимо применений к различным областям математики, исследования в области нестандартного анализа включают в себя и исследование самих нестандартных структур. В 1976 г. вышли сразу три книги по нестандартному анализу: “Элементарный анализ” и “Основания исчисления бесконечно малых” Г. Дж. Кейслера и “Введение в теорию бесконечно малых” К. Д. Стройана и В. А. Дж. Люксембурга. Быть может, наибольшую пользу нестандартые методы могут принести в области прикладной математики. В 1981 г. вышла книга Р. Лутца и М. Гозе “Нестандартный анализ: практическое руководство с приложениями”.

скачать реферат Александров Александр Данилович

(4.8.1912-27.8.1999)— советский математик, академик АН СССР (1964г.); член-корреспондент (1946г.). Родился в с Волыни (ныне Рязанская обл.). По окончании Ленинградского университета (1933г.) работал там же (в 1952—1964гг. - ректор). В 1964—1986гг. работал в Сибирском отделении АН СССР. С 1986г. в Ленинградском отделении Математического института им. В. А. Стеклова АН СССР. Основатель современной школы геометрии в целом. Основные труды Александрова относятся к геометрии, где он открыл методы изучения метрических свойств фигур, породившие новый объект исследования — нерегулярные метрические многообразия, более общие, нежели римановы пространства. Александров расширил область геометрических исследований и решил некоторые классические проблемы теории поверхностей. В частности построил при самых общих предположениях внутреннюю геометрию метрики выпуклых поверхностей и получил замечательные факты о выпуклых поверхностях (теорема о склеивании, изгибаемости выпуклой поверхности с границей и т. д.). Эти методы существенно расширили область геометрических исследований и привели к решению ряда классических проблем теории поверхностей, а также нашли важные применения в теории дифференциальных уравнений.

скачать реферат Пакеты математических расчетов (работа в Derive)

Прежде всего, это касается таких традиционно важных тем, как разложение на множители, операции с дробями, математический анализ, теория дифференциальных уравнений, линейная алгебра и векторный анализ. Во многих образовательных учреждениях совершенно справедливо не разрешается использовать научные калькуляторы, вооруженные системой Derive, на экзаменах и зачетах, прежде чем не будут привиты (и закреплены!) навыки использования классических методов анализа и выкладок в соответствующих областях. По достижении достаточного уровня освоения классики полезно вспомнить о потенциальном резерве времени, который объективно появляется при использовании систем автоматизации математических расчетов, и использовать этот резерв для резкого расширения круга изучаемых задач и методов вычислений. Незаменима роль системы Derive для интенсификации обучения при подготовке к вступительным экзаменам по математике. Ситуация известна: школьный курс пройден, а вот программы вступительных экзаменов еще не освоены. Времени мало, «набить руку» необходимо - права на ошибку у абитуриента на экзамене нет. Как тут быть? Система Derive в этой ситуации может взять на себя значительную часть функций репетитора (хотя и не все, конечно).

Калькулятор настольный "Citizen, SDC-444S", 12 разрядов.
12-разрядный калькулятор с двойной памятью. Однострочный цифровой дисплей. Функции: квадратный корень числа, процент, смена знака числа,
654 руб
Раздел: Калькуляторы
Набор для автолюбителя зимний "3 в 1".
Замучились удалять снег на автостоянке подручными средствами? Тратите уйму времени на осторожную очистку стёкол и кузова от ледяной корки?
1360 руб
Раздел: Автоаксессуары
Лента атласная, огненно-красная (5 см).
Декоративная лента для перевязывания коробок с тортами, упаковки различных штучных покупок, завязывания воздушных шаров. Ширина: 5 см. Длинна: 30 м.
356 руб
Раздел: Упаковочные ленты, банты
скачать реферат Известные математики (Софья Васильевна Ковалвская)

Через 4 года Вейерштрасс представил в Гетингенский университет работы Ковалевской ,посвященные интерес-нейшим вопросам математики и механики . Работа К теории дифференциальных уравнений в частных производных содержала доказательство существования решений у таких уравнений . В курсах дифференциальных уравнений , которые теперь читают в университетах ,эта теорема называется теоремой Ковалевской.Другая работа была посвященаисследованию формы гигантского кольца планеты Сатурн . В третьей работе излагались труднейшие теоремы математического анализа . Университет заочно присудил талантливому молодому ученому докторскую степень с наивысшей похвалой . Двадцати четырех лет, с докторским дипломом в кармане ,Ковалевская возвращается в Петербург.Здесь она на 6 лет отошла от занятий математикой . По существовавшим законам она , как женщина , имела право преподавать только арифметику в младших классах . В это время Софья Васильевна начинает писать статьи и рассказы ,начинается её литературно-публицистическая деятельность.Сама Ковалевская писала,что она всю жизнь не могла решить,к чему у нее было больше склонности- к математике или к литературе .

скачать реферат Жозеф Луи Лагранж

Здесь он выполнил важные работы по алгебре и теории чисел, а также по решению дифференциальных уравнений в частных производных. В Берлине был подготовлен труд Аналитическая механика (Meca ique a aly ique), опубликованный в Париже в 1788 и ставший вершиной научной деятельности Лагранжа. В основу всей статики положен т.н. принцип возможных перемещений, в основу динамики – сочетание этого принципа с принципом Д'Аламбера. Введены обобщенные координаты, разработан принцип наименьшего действия. В 1787, после кончины Фридриха II, Лагранж переехал в Париж и стал членом Парижской Академии наук. Во время Французской революции принял участие в работе комиссии, занимавшейся разработкой метрической системы мер и весов и нового календаря. В 1797, после создания Политехнической школы, вел преподавательскую деятельность, читал курс математического анализа. В 1795, после открытия Института Франции, стал главой его физико-математического класса. Лагранж внес существенный вклад во многие области математики, включая вариационное исчисление, теорию дифференциальных уравнений, решение задач на нахождение максимумов и минимумов, теорию чисел (теорема Лагранжа), алгебру и теорию вероятностей.

скачать реферат Синергетика как новое направление развития науки

Именно теория колебаний с ее "интернациональным языком", а впоследствии и "нелинейным мышлением" (Л.И. Мандельштам) стала для синергетики прототипом науки, занимающейся построением моделей систем различной природы, обслуживающих различные области науки. А качественная теория дифференциальных уравнений, начало которой было положено в трудах Анри Пуанкаре, и выросшая из нее современная общая теория динамических систем вооружила синергетику значительной частью математического аппарата. Взгляд с позиции теории динамических систем Любые объекты окружающего нас мира представляют собой системы, то есть совокупность составляющих их элементов и связей между ними. Элементы любой системы, в свою очередь, всегда обладают некоторой самостоятельностью поведения. При любой формулировке научной проблемы всегда присутствуют определенные допущения, которые отодвигают за скобки рассмотрения какие-то несущественные параметры отдельных элементов. Однако этот микроуровень самостоятельности элементов системы существует всегда. Поскольку движения элементов на этом уровне обычно не составляют интереса для исследователя, их принято называть “флуктуациями”.

скачать реферат Три кризиса в развитии математики

В “Началах” Евклида кризис основ древнегреческой математики был преодолен — конечно, для своего времени, и, добавим, преодолен не во всех пунктах и не всегда совершенным образом. II. Способы обоснования математики в XVIII и в первой половине XIX века 1. Особенности способов обоснования математики в конце XVII и в XVIII веке В конце XVII и в XVIII веке все возрастающие запросы практики и других наук побуждали ученых максимально расширять область и методы исследований математики. Понятия бесконечности, движения и функциональной зависимости выдвигаются на первое место, становятся основой новых методов математики. В конце XVII и в XVIII веке в математике и механике были получены классические результаты фундаментального значения. Основным здесь было развитие дифференциального и интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления и аналитической механики. Значительные результаты были получены в алгебре и теории чисел. А. Эйлер, а вслед за ним и некоторые другие ученые второй половины XVIII века проделали большую работу по систематизации содержания математических дисциплин, в первую очередь математического анализа, а вместе с ним алгебры и тригонометрии.

скачать реферат Интегральное исчисление. Исторический очерк

Основным здесь было развитие дифференциального и интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления и аналитической механики. Основные понятия и теория интегрального и дифференциального исчислений, прежде всего связь операций дифференцирования и интегрирования, а также их применения к решению прикладных задач были разработаны в конце XVII века, но основывались на идеях, сформулированных в начале XVII веке великим математиком и астрономом Иоганом Кеплером. В ноябре 1613 года королевский математик и астролог австрийского двора И. Кеплер праздновал свадьбу. Готовясь к ней, он приобрёл несколько бочек виноградного вина. При покупке Кеплер был поражён тем, что продавец определял вместимость бочки, производя одно единственное действие - измеряя расстояние от наливного отверстия до самой дальней от него точки днища. Ведь такое измерение совершенно не учитывало форму бочки! Кеплер сразу увидел, что перед ним интереснейшая математическая задача - по нескольким измерениям вычислить вместимость бочки.

Ручка-стилус шариковая "Екатерина".
Перед Вами готовый подарок в стильной упаковке — шариковая ручка со стилусом. Она имеет прочный металлический корпус, а надпись нанесена с
415 руб
Раздел: Металлические ручки
Копилка-гиря "ГТО".
Гипсовая копилка. Размеры изделия: 17х12х12 см Упаковка: серый гофрокартон, пузырчатая пленка.
418 руб
Раздел: Копилки
Полотенце-уголок для купания Happy Baby "Fluffy" (зеленое).
Полотенце-уголок обеспечит малышу комфорт и сохранит тепло после купания. Натуральный мягкий материал быстро впитает влагу с нежной кожи
699 руб
Раздел: Полотенца
скачать реферат Математизация науки и ее возможности

Являясь крупным специалистом в теории дифференциальных уравнений, Вольтерра рассматривает x и y как фунции от времени и быстро находит необходимый объект в математике – систему обыкновенных дифференциальных уравнений где A, B, C, D – некоторые положительные коэффициенты, зависящие от конкретных природных условий. Изучая затем эту систему методами, разработанными другими математиками задолго до него, Вольтерра получает описание и объяснение многих явлений, замеченных за долгую историю рыболовства в Италии, таких например, как странные колебания величины улова сардин (а значит и их общей численности). Этот пример показывает еще одну идею моделирования – некоторое упрощение, отбрасывание лишней, не нужной информации. Здесь, это допущения одинаковости особей, равновероятности их встреч, равновозможности производить потомство. Мы как-будто бы абстрагируемся от конкретной сардины и выделяем только нужные для нас ее свойства. Конечно в итоге, мы получаем несколько упрощенную картину явления, но в данном случае нам это и требовалось.

скачать реферат История физики: теория относительности

Пуанкаре Жюль Анри (29.04.1854-17.07.1912) - французский математик, физик, астроном и философ, член Парижской АН (1887), почетный член многих академий наук, член-корреспондент Петербургской АН (1895), медали Дж.Сильвестера, Н.И.Лобачевского и др. Родился в Нанси. Учился в Политехнической школе, окончил горную школу (1879). С 1881 работал в Парижском университете (с 1886 - заведующий кафедрой). В 1883-97 - репетитор, в 1904-08 - профессор Политехнической школы, с 1902 - также заведующий кафедрой Высшей школы ведомства связи. Физические работы относятся к области теории относительности, термодинамики, электричества, оптики, теории упругости, молекулярной физики. Независимо от А.Эйнштейна высказал принцип относительности в качестве всеобщего положения. В математике большой цикл работ относится к теории дифференциальных уравнений, Пуанкаре провел важные исследования в теории трансцендентных функций, топологии. Широко применил свои математические результаты в небесной механике и физике. Радикально согласовать механику и электродинамику удалось лишь с появлением в 1905 г. работы Эйнштейна "К электродинамике движущихся тел". Эйнштейн Альберт (14.03.1879–18.01.1955) – физик-теоретик, член многих академий наук и научных обществ, иностранный член АН СССР (1926), медали Копли, Франклина и др., в его честь назван 99 химический элемент - эйнштейний.

скачать реферат Леонард Эйлер

Мемуары 1757-71 внесли большой вклад в механику сплошных сред (основные уравнения движения идеальной жидкости в форме Эйлера и в т.н. переменных Лангранжа, колебания газа в трубах и т.д.). Обширный цикл работ, начатый в 1748 году, Эйлер посвятил математической физике: задачам о колебании струн, пластинок, мембраны и др. Все эти исследования стимулировали развитие теории дифференциальных уравнений, приближённых методов анализа, специальных функций, дифференциальной геометрии и т. д. Многие чисто математические открытия Эйлера содержатся именно в этих его работах. Главным делом Эйлера, как математика, явилась разработка математического анализа, самые рамки которого он значительно расширил по сравнению со своими предшественниками. Он заложил основы нескольких математических дисциплин, которые только в зачаточном виде имелись или вовсе отсутствовали в исчислении бесконечных малых И.Ньютона, Г.Лейбница и Я. и И. Бернулли. Так, Эйлер первый систематически ввёл в рассмотрение функции комплексного аргумента (Введение в анализ бесконечных" ,Т.1). В частности, он вывел формулы, связывающие тригонометрические функции с показательной (см. прилож. №1), следует заметить, что эта связь была ранее упомянута без доказательства в одной работе Р.Котеса. Работы Эйлера в этом направлении, выяснение им некоторых свойств аналитических функций (уравнение Д`Аламбера-Эйлера, связь с камфорными отображениями) и, наконец, применение мнимых величин к вычислению интегралов положили начало теории функций комплексного переменного.

скачать реферат Вклад Л.Эйлера в развитие математического анализа

Некоторые из его потомков до сих пор живут в России. Л.Эйлер внес очень большой вклад в развитие математического анализа. Цель реферата – изучить историю развития математического анализа в XVIII веке. 1 Понятие математического анализа. Исторический очерк Математический анализ - совокупность разделов математики, посвящённых исследованию функций и их обобщений методами дифференциального и интегрального исчислений. При столь общей трактовке к анализу следует отнести и функциональный анализ вместе с теорией интеграла Лебега, комплексный анализ (ТФКП), изучающий функции, заданные на комплексной плоскости, нестандартный анализ, изучающий бесконечно малые и бесконечно большие числа, а также вариационное исчисление. В учебном процессе к анализу относят дифференциальное и интегральное исчисление теорию рядов (функциональных, степенных и Фурье) и многомерных интегралов векторный анализ. При этом элементы функционального анализа и теории интеграла Лебега даются факультативно, а ТФКП, вариационное исчисление, теория дифференциальных уравнений читаются отдельными курсами.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.