телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы

РАСПРОДАЖАКрасота и здоровье -30% Канцтовары -30% Образование, учебная литература -30%

все разделыраздел:Математика

Решение систем дифференциальных уравнений методом Рунге - Кутты 4 порядка

найти похожие
найти еще

Горшок торфяной для цветов.
Рекомендуются для выращивания крупной рассады различных овощных и цветочных, а также для укоренения саженцев декоративных, плодовых и
7 руб
Раздел: Горшки, ящики для рассады
Карабин, 6x60 мм.
Размеры: 6x60 мм. Материал: металл. Упаковка: блистер.
44 руб
Раздел: Карабины для ошейников и поводков
Совок большой.
Длина 21,5 см. Расцветка в ассортименте, без возможности выбора.
21 руб
Раздел: Совки
Решение систем дифференциальных уравнений методом Рунге - Кутты 4 порядка Курсовая работа по дисциплине :  Математические методы и модели в расчетах на ЭВМ Выполнил:  студент гр. ХТ-96 Кузнецов М.В. Министерство образования Украины Донецкий государственный технический университет Кафедра  химической технологии топлива г. Донецк  1998 год Введение Обыкновенные дифференциальные уравнения (ОДУ) широко используются для математического моделирования процессов и явлений в различных областях науки и техники. Переходные процессы в радиотехнике, кинетика химических реакций, динамика биологических популяций, движение космических объектов, модели экономического развития исследуются с помощью ОДУ.    В дифференциальное уравнение -го порядка в качестве неизвестных величин входят функция y(x) и ее первые производных по аргументу x      j( x, y, y1, .  y( )             1.1    Из теории ОДУ известно, что уравнение (1.1) эквивалентно системе уравнений первого порядка                jk(x, y1, y1’ ,y2 ,y2 ’, . ,y ,y 1.2 где k=1, . , .    Уравнение (1.1) и эквивалентная ему система (1.2) имеют бесконечное множество решений. Единственные решения выделяют с помощью дополнительных условий, которым должны удовлетворять искомые решения. В зависимости  от вида таких условий рассматривают три типа задач, для которых доказано существование и единственность решений.    Первый тип – это задачи Коши, или задачи с начальными условиями. Для таких задач кроме исходного уравнения (1.1) в некоторой точке xo должны быть заданы начальные условия, т.е. значения функции y(x) и ее производных                y(x0)=y0’ ,   y’(x0)=y10, . , y( -1)(x0)=y -1,0. Для системы ОДУ типа (1.2) начальные условия задаются в виде                y1(x0)=y10 ,     y2(x0)=y20, . ,             1.3    Ко второму типу задач относятся так называемые граничные, или краевые задачи, в которых дополнительные условия задаются в виде функциональных соотношений между искомыми решениями. Количество условий должно совпадать с порядком уравнения или системы. Если решение задачи определяется в интервале x є , то такие условия могут быть заданы как на границах, так и внутри интервала. Минимальный порядок ОДУ, для которых может быть сформулирована граничная задача, равен двум.    Третий тип задач для ОДУ – это задачи на собственные значения. Такие задачи отличаются тем, что кроме искомых функций y(x) и их производных в уравнения входят дополнительно m неизвестных параметров l1,l2, В ходе выполнения работы был произведен расчет системы дифференциальных уравнений методом Рунге-Кутты четвертого порядка, произведен расчет кинетической схемы процесса при изотермических условиях при данных значениях концентраций и констант скоростей. Расчет произведен с малой величиной погрешности. Список литературы 1.  Мудров А.Е.Численные методы для ПЭВМ на языках Паскаль, Фортран и Бейсик. МП “Раско”, Томск, 1991 г.

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 История вычислительной техники в лицах

Одну из первых программ составил С.Л. Соболев интегрирование дифференциальных уравнений методом Рунге-Кутта для обретения навыков программирования. Г.А. Михайловым были разработаны набор программ ввода-вывода, диагностики, а также «потребительские» программы для вычисления интегралов, решения систем уравнений, обращения матриц и др. В день избрания академиком Далеко не сразу ЦЭМ-1 получила признание даже в родных стенах. Руководитель одного из отделений института академик Лев Андреевич Арцимович, талантливейший физик, экспериментатор и теоретик, прекрасно владея аналитическим математическим аппаратом, вполне мог позволить себе скептическое отношение к таким новациям. Но пришло время, когда и он убедился в полезности и силе ЭВМ: в конце 1954Pг. ГА. Михайлов запрограммировал и решил уравнение, составленное СМ. Осовцом (из команды теоретиков МЛ. Леонтовича), которое описывает процесс сжатия плазменного шнура в экспериментах по управляемому термоядерному синтезу. Арцимович поначалу забраковал результат ускоряющееся сжатие с наложенными на него колебаниями, однако после трех-четырех дней теоретического анализа пришел к такому же результату, а еще неделю-другую спустя из архивов были извлечены осциллограммы, отвергнутые ранее жак брак эксперимента, подтверждающие этот неожиданный эффект

скачать реферат Решение систем дифференциальных уравнений методом Рунге-Куты 4 порядка

Министерство образования Украины Донецкий государственный технический университет Кафедра химической технологии топлива Курсовая работана тему : Решение систем дифференциальных уравнений методом Рунге - Кутты 4 порядкапо дисциплине : Математические методы и модели в расчетах на ЭВМВыполнил: студент гр. ХТ-96 Кузнецов М.В.Проверил: доц. Чеховской Б.Я. г. Донецк 1998 год РЕФЕРАТ Дифференциальные Уравнения, Метод Рунге-Кутта, РК-4, Концентрация, Метод Эйлера, Задача Коши, Ряд Тейлора, Паскаль, Реакция, Интервал, Коэффициенты Дифференциального Уравнения.Листов : 28 Таблиц : 2 Графиков : 4 Решить систему дифференциальных уравнений методом Рунге-Кутты 4 порядка, расчитать записимость концентрации веществ в зависимости от времени, проанализировать полученную зависимость, удостовериться в действенности метода. Содержание: Введение1. Постановка задачи 62. Суть метода 83. Выбор метода реализации программы 144. Блок – схема .155. Программа .176. Идентификация переменных 197. Результаты .208. Обсуждение результатов .219. Инструкция к программе .2310. Заключение .27 Литература Введение Обыкновенные дифференциальные уравнения (ОДУ) широко используются для математического моделирования процессов и явлений в различных областях науки и техники.

Набор "Магазин мороженого".
Комплектация: маленькая ложка (2 шт.), шарики мороженого (5 шт.), касса со сканером, рожок для мороженого голубой (2 шт.), рожок для
899 руб
Раздел: Магазины, супермаркеты
Ручка-стилус шариковая "Супер-папа!".
Перед Вами готовый подарок в стильной упаковке — шариковая ручка со стилусом. Она имеет прочный металлический корпус, а надпись нанесена с
415 руб
Раздел: Металлические ручки
Настольная игра "Хватайка".
«Хватайка» — быстрая игра на развитие реакции и наблюдательности. Бросьте кубики и быстрее всех найдите карту, которая совпадает
690 руб
Раздел: Игры на ловкость
 Maple 9.5/10 в математике, физике и образовании

Если представить систему дифференциальных уравнений в матричном виде у = Ах, то такая система относится к жесткой при выполнении следующих двух условий: • действительные части всех собственных значений матрицы А отрицательны, т. е. Re(λk)<0 (А = 0, 1, …, n-1); • величина s=max|Re(λk) |/min|Re(λk) (k=0, 1, …, n-1), именуемая жесткостью системы, должна быть велика. Жесткие системы впервые появились при решении систем дифференциальных уравнений химической кинетики. Решение таких систем представляется фрагментами с сильно отличающейся крутизной зависимостей. Нередко это случается и при анализе электрических цепей с резко отличными постоянными времени. Если шаг решения h сравним или больше наименьшей постоянной времени решения, то применение стандартных методов (например, Рунге-Кутта) с неизменным шагом приводит к большим погрешностям вычислений и даже к к расхождению вычислительного процесса, в ходе которого решение грубо отлично от существующего. Maple в большинстве случаев дает верное решение даже без указания метода решения

скачать реферат Методы решения алгебраических уравнений

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Московский автомобильно-дорожный институт (ГТУ) МФ Факультет «АТ» Кафедра «О и БД» КУРСОВАЯ РАБОТА по предмету «Прикладная Математика»Выполнил студент 2ЭТ гр. Мусиев Г.М. Проверил преподаватель Баламирзоев А.Г. Махачкала 2008 г. Оглавление Введение 1. Решение нелинейных уравнений. Метод деления отрезка пополам. Метод касательных. Комбинированный метод хорд и касательных 2. Решение систем линейных алгебраических уравнений. Методом Крамера. Методом Гаусса. Метод Жордана Гаусса. Метод Зейделя 3. Математическая обработка результатов опыта. Аппроксимация функций. Полином Лагранжа. Метод наименьших квадратов 4. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера. Метод Рунге – Кутта 5. Практический раздел Введение В достаточно общем случае процесс решения прикладных задач состоит из следующих этапов: 1. постановка задачи и построение математической модели (этап моделирования); 2. выбор метода и разработка алгоритма (этап алгоритмизации) ; 3. запись алгоритма на языке, понятном ЭВМ (этап программирования); 4. отладка и исполнение программы на ЭВМ (этап реализации); 5. анализ полученных результатов (этап интерпретации).

 Maple 9.5/10 в математике, физике и образовании

Фазовые портреты построены для двух наборов начальных условий: x(0)=y(0)=1,2 и y(0)=1 и y(0)=0,9. Рис. 7.15. Пример построения двух фазовых портретов на фоне векторного поля Читатель может легко дополнить этот пример выводом графиков временных зависимостей числа хищников и жертв и убедиться в том, что они действительно носят колебательный характер. При этом отличие фазовых портретов от эллиптической формы говорит о том, что форма колебаний заметно отличается от синусоидальной. Следует отметить, что функция DEplot может обращаться к другим функциям пакета SEtools для обеспечения специальных графических возможностей, таких как построение векторного поля или фазового портрета решения. В файле deplot.mws можно найти множество дополнительных примеров на применение функции Deplot. 7.5.4. Функция DEplot3d из пакета DEtools В ряде случаев решение систем дифференциальных уравнений удобно представлять в виде пространственных кривых — например, линий равного уровня, или просто в виде кривых в пространстве. Для этого служит функция DEplot3d: DEplot3d(deqns, vars, trange, initset, o) DEplot3d(deqns, vars, trange, yrange, xrange, initset, o) Назначение параметров этой функции аналогично указанному для функции DEplot. Рис. 7.16 поясняет применение функции DEPlot3d для решения системы из двух дифференциальных уравнений с выводом фазового портрета колебаний в виде параметрически заданной зависимости x(t), y(t)

скачать реферат Устойчивость систем дифференциальных уравнений

Вместе тем часто бывает необходимо знать не конкретные численные решения, а особенности решений: поведение отдельных решений при изменении параметров систем, взаимное поведение решений при различных начальных данных, является ли решение периодическим, как меняется общее поведение системы при изменении параметров. Все эти вопросы изучает качественная теория дифференциальных уравнений. Одним из основных вопросов этой теории является вопрос об устойчивости решения, или движения системы, если ее трактовать как модель физической системы. Здесь важнейшим является выяснение взаимного поведения отдельных решений, незначительно отличающихся начальными условиями, то есть будут ли малые изменения начальных условий вызывать малые же изменения решений. Этот вопрос был подробно исследован А. М. Ляпуновым. Основу теории Ляпунова составляет выяснение поведения решений при асимптотическом стремлении расстояния между решениями к нулю. В данной курсовой работе излагаются основы теории Ляпунова устойчивости непрерывных гладких решений систем дифференциальных уравнений первого порядка, а именно: в главе 1 излагаются основные определения, необходимые для изучения устойчивости; в главе 2 дается понятие устойчивости решений систем в общем виде и по первому приближению; в главе 3 излагаются основы второго метода Ляпунова. 1. Свойства систем дифференциальных уравнений. 1.1. Основные определения.

скачать реферат Программная реализация модального управления для линейных стационарных систем

Курсовая работа: «Программная реализация модального управления для линейных стационарных систем»Постановка задачи:1. Для объекта управления с математическим описанием - -мерный вектор состояния, - скалярное управление, - матрица действительных коэффициентов, найти управление в функции переменных состояния объекта, т.е. - матрица обратной связи, такое, чтобы замкнутая система была устойчивой. 2. Корни характеристического уравнения замкнутой системы (3) должны выбираться по усмотрению (произвольно) с условием устойчивости системы (3). Задание:1. Разработать алгоритм решения поставленной задачи. 2. Разработать программу решения поставленной задачи с интерактивным экранным интерфейсом в системах Borla d Pascal, urbo Visio , Delphi - по выбору. 3. Разработать программу решения систем дифференциальных уравнений (1) и (3) с интерактивным экранным интерфейсом. 4. Разработать программу графического построения решений систем (1) и (3) с интерактивным экранным интерфейсом. Введение Наряду с общими методами синтеза оптимальных законов управления для стационарных объектов всё большее применение находят методы, основанные на решении задачи о размещении корней характеристического уравнения замкнутой системы в желаемое положение.

скачать реферат Моделирование газофазных процессов, протекающих при гетерогенно-каталитическом восстановлении оксидов азота

Программа решает составленные уравнения методом Рунге-Кутта четвертого порядка, результат выводится в виде графических зависимостей. Конверсия каждого вещества, участвующего в процессе, представляется как функция от выбранного параметра – времени пребывания или температуры. Результаты и их обсуждениеВлияние энергии активации реакции образования углеводородного радикала на конверсию O. Исходными данными для процесса образования углеводородного радикала являлись термодинамические параметры реакции отрыва протона от метана, так как от остальных углеводородов протон отщепить энергетически существенно легче. Следовательно, уменьшая энергию активации, мы фактически исследуем влияние на протекание процесса замещения восстановителя в реакции восстановления оксида азота на его гомолог. Это позволит подобрать оптимальный восстановитель. Известно, что чем больше молекулярная масса парафина, тем меньшая энергия требуется для отрыва протона от него. Error: Refere ce source o fou d Рис.4 Зависимость конверсии оксида азота от температуры при различных энергиях активации процесса образования углеводородного радикала. На рис.4 видно, что с уменьшением энергии активации максимум конверсии смещается в область низких температур Этот факт соответствует экспериментальным данным, и, следовательно, подтверждает физический смысл полученной модели. 3.2. Влияние времени контакта на конверсию O Error: Refere ce source o fou d Рис 5.

скачать реферат Лекции по гидравлике

Переменные а, Ь, с, и / носят название переменных Лагранжа. Задача сводится к решению систем дифференциальных уравнений в частных производных для каждой части- цы жидкости. Метод Лагранжа ввиду громоздкости и трудности решения может использоваться в случаях детального изучения поведения лишь отдельных частиц жидкости. Использование этого метода для инженерных расчётов не рентабельно. Суть другого метода, метода Эйлера заключается в том, что движение жидкости подменяется изменением поля скоростей. Под полем скоростей понимают некоторую достаточно большую совокупность точек бесконечного пространства занятого движущейся жидкостью, когда в каждой точке пространства в каждый момент времени находится частица жидкости с определённой скоростью (вектором скорости). Припишем неподвижным точкам пространства скорость частиц жидкости, которые в данный момент времени находятся в этих точках. Поскольку пространство бесконечно и непрерывно, то мы имеем массив данных о скоростях достаточно полный, чтобы определить (задать) поле в каждой его точке.

Глобус политический, диаметр 320 мм.
Диаметр: 320 мм. Масштаб: 1:40000000. Материал подставки: пластик. Цвет подставки: черный. Шар выполнен из толстого пластика, имеет один
791 руб
Раздел: Глобусы
Таблетки для посудомоечной машины "Clean&Fresh", 5 in1 (midi).
Таблетки для посудомоечной машины «Clean&Fresh» – чистота и свежесть Вашей посуды в каждой таблетке! Великолепно очищает посуду и содержит
379 руб
Раздел: Для посудомоечных машин
Мольберт "Ника растущий", со счетами (сиреневый).
Двусторонний мольберт для детей прекрасно подойдет для обучения и для развлечения. Одна сторона мольберта - магнитная доска для работы с
1790 руб
Раздел: Буквы на магнитах
скачать реферат Теория Матриц и Определителей

Следствие 5, как и линейное свойство, допускает более общую формулировку, которую я приведу для строк : если к элементам некоторой строки определителя прибавить соответствующие элементы строки, являющейся линейной комбинацией нескольких других строк этого определителя ( с какими угодно коэффициентами ), то величена определителя не изменится. Следствие 5 широко применяется при конкретном вычислении определителей. 3. Системы линейных уравнений. 3.1 Основные определения. . 3.2 Условие совместности систем линейных уравнений. . 3.3 Решение систем линейных уравнений методом Крамера. Известно, что используя матрицы мы можем решать различные системы уравнений, при чем эти системы могут быть какой угодно величены и иметь сколько угодно переменных. С помощью нескольких выводов и формул решение огромных систем уравнений становится довольно быстрым и более легким. В частности, я опишу методы Крамера и Гаусса. Наилегчайшим способом является метод Крамера ( для меня ), или как его еще называют – формула Крамера. Итак, допустим, что мы имеем какую-либо систему уравнений , в виде матрицы эту систему можно записать таким образом : A = , где ответы будут уравнений будут находится в последнем столбце.

скачать реферат Алгебра матриц. Системы линейных уравнений

Вариант 6 Тема: Алгебра матриц Задание: Выполнить действия над матрицами. 1) С=3A-(A 2B)B 2) D=A2 B2 4E2 Тема: Обращение матриц Обратить матрицу по определению: Определитель матрицы: Далее находим матрицу алгебраических дополнений (союзную матрицу): Обратную матрицу находим: По определению обратной матрицы: Действительно: Тема: решение матричных уравнений Задание 1: Решить матричное уравнение: Решение. Нахождение столбца Х сводится к умножению матрицы на обратную: Матрица коэффициентов А: Найдем обратную матрицу A-1: Определитель матрицы A: Алгебраические дополнения: Транспонированная матрица алгебраических дополнений: Запишем выражение для обратной матрицы: Итак, выполняем умножение матриц и находим матрицу X: Ответ: Задание 2: Решить систему уравнений матричным способом Решение Матричная запись уравнения: Матрица коэффициентов А: Найдем обратную матрицу A-1: Определитель матрицы A: Алгебраические дополнения: Транспонированная матрица алгебраических дополнений (союзная матрица): Запишем выражение для обратной матрицы: Вычислим столбец неизвестных: Тема: Решение систем линейных уравнений методом Крамера и Гаусса Задание 1: Исследовать и решить систему по формулам Крамера: Найти решение системы уравнений по методу Крамера.

скачать реферат Волновой генетический код

При малых гамильтониан, что совпадает с соответствующей частью общего гамильтониана, использованного ранее (см. выше). В этом случае уравнения движения для , полученные из (1), имеют вид: (2) где произведена замена . В случае в системе (2) можно перейти к безразмерному дифференциальному уравнению синус-Гордона: , (3) ”непрерывный аналог” системы (2). Это уравнение имеет солитонные решения, в частности, односолитонное решение, или кинк, характеризующий динамику распространения дислокации в цепи. В соответствии с (1) система нелинейных уравнений движения записывается следующим образом: (4) Как видим, системы (2) и (4) существенно различаются. Отметим, однако, что проведенное нами численное моделирование динамики систем (2) и (4) показало следующее: если в качестве начальных условий для численного интегрирования (2) выбрать односолитонное решение его “непрерывного аналога” (3) - кинк (см. выше), то обнаруживается принципиальное сходство в характере решений. Однако, при задании начальных условий в следующем виде: (5) где - ”ступенчатая” функция с высотой ступени и углом наклона уступа A, выявилось различие динамики данных систем (срав. рис.1 и 2,3). Более точно, системы (2) и (4) численно интегрировались методом Рунге-Кутта четвертого порядка с начальными условиями, заданными в виде (7), в интервале с шагом .

скачать реферат Экспериментальное исследование свойств методов Рунге-Кутты

Собственно благодаря вышеуказанному свойству c) методы Рунге-Кутты предпочтительней рядов Тейлора для реализации на практике. Тем не менее поводов для веселья мало, ибо перед нами стоит нелегкая задача неоднократного вычисления функции при неодинаковых значениях и для вычисления последующей точки решения. Это Богом дарованное наказание за преподнесенную нам численным методом поблажку, заключающуюся в отсутствии какой бы то ни было надобности вычисления иной раз весьма громоздких производных, но трудностей боятся кто угодно, только не мы. 1 ПОСТАНОВКА ЗАДАЧИ 1.1 Приведение к нормальной форме Коши Нормальной формой Коши принято называть общую форму записи ОДУ, то есть представление в виде системы дифференциальных уравнений первого порядка: (1) ДУ второго порядка, заданное согласно варианту №3 имеет вид: (2) Задание предполагает нахождение решения на интервале при следующих начальных условиях: (3) Для решения ДУ его просто необходимо представить согласно нормальной формы Коши. Для этого руководствуемся следующими обозначениями: (4) В итоге имеется система ДУ первого порядка вида: (5) Произведя все вышеописанные манипуляции над заданным в варианте уравнением, получим следующую систему: (6) Система (6) есть решение уравнения (2). 1.2 Метод Рунге-Кутты второго порядка В методах Рунге-Кутты интеграл заменяется линейной комбинацией значений подынтегральной функции, вычисленных при разных значениях аргумента: (7) Метод Рунге-Кутты представим в виде: (8) Из вышеуказанных общих формул (8) получают формулы метода Рунге-Кутты 2-ого порядка m=2; (9) Для определения метода необходимо найти значения вещественных коэффициентов: .

скачать реферат Метод Хемминга

A, U ,K - векторы -го порядка; l=1, 2; m=1 при l=1; m=1,1/2 при l=2; A(l)i-1=Y(l)i-1; A(2)i-1/2=U(2)i-1/2.   Характеристика программы. Программа состоит из стандартной информативы, реализующей описанный метод, рабочей информативы, задающей правые части уравнений системы и директивы. Длина стандартной информативы 1600 символов. Объем исходных данных : 7 чисел, 2 массива, функций. В результате работы программы на печать выводится на участке "разгона" X, значения функций и производных, далее X, G и Y на всем отрезке интегрирования через Ю шагов и в конце отрезка. Программа рекомендуется для решения систем обыкновенных дифференциальных уравнений на больших отрезках, так как считает быстрее одноточечных методов. Для контроля постоянно выводится погрешность вычислений G, которая позволяет следить за точностью решения. "Разгон" (нахождение значений функций и производных в точках X0, X0 Q, X0 2 Q , X0 3 Q, где Q - шаг интегрирования )осуществляется методом Рунге-Кутта с увеличенной разрядностью. В программе предусмотрена возможность при получении большой погрешности вычисления в точка "разгона" уменьшить шаг интегрирования в этих точках (см. способ задания J), а при быстром возрастании погрешности вычислений G уменьшить шаг интегрирования методом Хемминга или увеличить разрядность вычислений.

Подставка деревянная для ножей Regent (сосна, 5 отверстий).
Подставка деревянная с отверстиями для кухонных ножей. Деревянная опорная стойка. 5 отверстий для ножей. Материал: сосна.
374 руб
Раздел: Подставки для ножей
Беговел "Funny Wheels Rider Sport" (цвет: оранжевый).
Беговел - это современный аналог детского велосипеда без педалей для самых маленьких любителей спорта. Удобный и простой в
2900 руб
Раздел: Беговелы
Подушка "Нордтекс. Влюбленный скворец", 40х40 см.
Декоративные подушки являются непременным элементом современного интерьера. Они могут послужить прекрасным украшением не только спальни,
454 руб
Раздел: Подушки
скачать реферат Разработка программы поиска решения системы дифференциальных уравнений двумя методами: Рунге-Кутта и Рунге-Кутта-Мерсона

Выбор метода решения посредствам меню, при помощи клавиш управления курсором. Таким образом, программа должна обеспечивать возможность: выбора пользователем численного метода поиска решения системы дифференциальных уравнений; предоставить пользователю возможность получить краткую справку о программе; вывода результатов вычисления на дисплей в удобном для восприятия виде. В результате сформулируем следующую задачу по созданию программы: вид системы дифференциальных уравнений должен задаваться в подпрограмме – процедуре; вид правой части уравнений должен задаваться в подпрограмме – функции; программа после загрузки должна выводить на дисплей исходное окно-заставку, в которой отображаются общие сведения о статусе программы и её авторе; после выполнения указанной в строке подсказки процедуры перехода должно выводиться вертикальное меню с пунктами: «Справка», «Метод Рунге-Кутта», «Метод Рунге-Кутта-Мерсона» и «Выход» при выборе в меню пункта «Справка» должна выводиться краткая справка о назначении программы; после выбора в меню варианта численного метода должно открываться отдельное окно, в котором будут вводиться начальные условия и выводиться результат поиска выбранным методом; при выборе пункта меню «Выход» программы должна завершать работу. 2. Математическая формулировка задачи Задача Коши заключается в решении систем обыкновенных дифференциальных уравнений (1) первого порядка, представляемых в виде: (1.1) Где j=1 -номер каждой зависимой переменной yj, x-независимая переменная . Решение системы (1.1) при заданных начальных условиях x=x0, y1(x0)=y10, ,y2(x0)=y20, y (x0)=y 0 сводиться к нахождению зависимостей (интегральных кривых) y1(x), ,y2(x), y (x), проходящих через точки (x0,y10), (x0,y20), , (x0,y 0).

скачать реферат РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЯТИТОЧЕЧНЫМ МЕТОДОМ АДАМСА – БАШФОРТА

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЯТИТОЧЕЧНЫМ МЕТОДОМ АДАМСА – БАШФОРТА Работу выполнил студент гр.И-29 Уханов Е.В. Кафедра “Системы и Процессы Управления” “ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ” Харьков 2001 ВВЕДЕНИЕ Во многих областях науки и техники , а также отраслях наукоемкой промышленности , таких как : авиационная , космическая , химическая , энергетическая  , - являются весьма распространенные задачи прогноза  протекания процессов ,  с дальнейшей их коррекцией . Решение такого рода задач связано с необходимостью использования численных методов , таких как : метод прогноза и коррекции , метод Адамса-Башфорта , метод Эйлера , метод Рунге-Кута , и др.  При этом , стоит задача решения системы линейных дифференциальных уравнений первого порядка одним из методов интегрирования , на произвольном промежутке времени . Одним из оптимальных методов дающих высокую точность результатов – является пяти точечный метод прогноза и коррекции Адамса-Башфорта . Для повышения точности метода используется трех точечный метод прогноза и коррекции с автоматическим выбором шага , что приводит к универсальному методу интегрирования систем дифференциальных уравнений произвольного вида на любом промежутке интегрирования  .

скачать реферат РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЯТИТОЧЕЧНЫМ МЕТОДОМ АДАМСА – БАШФОРТА

Решение такого рода задач связано с необходимостью использования численных методов , таких как : метод прогноза и коррекции , метод Адамса- Башфорта , метод Эйлера , метод Рунге-Кута , и др. При этом , стоит задача решения системы линейных дифференциальных уравнений первого порядка одним из методов интегрирования , на произвольном промежутке времени . Одним из оптимальных методов дающих высокую точность результатов – является пяти точечный метод прогноза и коррекции Адамса-Башфорта . Для повышения точности метода используется трех точечный метод прогноза и коррекции с автоматическим выбором шага , что приводит к универсальному методу интегрирования систем дифференциальных уравнений произвольного вида на любом промежутке интегрирования . Разработка программных средств реализующих расчет точного прогноза протекания процессов , является важнейшей вспомогательной научно- технической задачей . Целью данной курсовой работы является разработка алгоритма решения систем линейных дифференциальных уравнений первого порядка пяти точечным методом прогноза и коррекции Адамса-Башфорта . 1. ПОСТАНОВКА ЗАДАЧИ Рассмотрим произвольную систему линейных дифференциальных уравнений первого порядка : (1.2) где А заданная матрица размером x . - вектор с координатами , который подлежит определению ; – произвольное целое число ; - заданные вектора правых частей с координатами .

скачать реферат Иерархическое управление большими системами

Задачи подсистем первого уровня были решены через набор из четырех матричных уравнений Риккати третьего порядка: (4.3.33) где Ki( ) – это положительно определенная матрица Риккати i x i и . Методы «без взаимодействия» и «удвоения» решают дифференциальное матричное уравнение Риккати, предложены Daviso и Maki в 1973 и рассмотрены Jamshidi в 1980,были использованы для компьютерного решения (4.3.33). Уравнения состояния подсистем были решены стандартным методом Рунге-Кутта четвертого порядка, а итерации второго уровня были выполнены по схеме скоростного градиента (4.3.19), (4.3.26)-(4.3.27), используя кубическую сплайн интерполяцию (Hewle -Packard, 1979) для оценки подходящих численных интегралов. Размер шага был выбран =0.1, как и в более ранних рассмотрениях этого примера (Pearso , 1971; Si gh, 1980). Алгоритм скоростного градиента позволил уменьшить ошибку с 1 до за шесть итераций, как показано на рисунке 4.8, который был в тесной связи с результатами предыдущих исследований модифицированной версии системы (4.3.29), полученными Si gh (1980).

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.