телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы

РАСПРОДАЖАОбразование, учебная литература -30% Сувениры -30% Рыбалка -30%

все разделыраздел:Математика

Решение систем линейных алгебраических уравнений

найти похожие
найти еще

Забавная пачка "5000 дублей".
Юмор – настоящее богатство! Купюры в пачке выглядят совсем как настоящие, к тому же и банковской лентой перехвачены... Но вглядитесь
60 руб
Раздел: Прочее
Чашка "Неваляшка".
Ваши дети во время приёма пищи вечно проливают что-то на ковёр и пол, пачкают руки, а Вы потом тратите уйму времени на выведение пятен с
222 руб
Раздел: Тарелки
Коврик для запекания, силиконовый "Пекарь".
Коврик "Пекарь", сделанный из силикона, поможет Вам готовить вкусную и красивую выпечку. Благодаря материалу коврика, выпечка не
202 руб
Раздел: Коврики силиконовые для выпечки

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Большая Советская Энциклопедия (ЛИ)

Симплексный метод состоит в таком направленном переборе вершин, при котором значение целевой функции возрастает от вершины к вершине. Каждой вершине соответствует система уравнений, выбираемая спец. образом из системы неравенств (2) — (3), поэтому вычислительная процедура симплексного метода состоит в последовательном решении систем линейных алгебраических уравнений. Простота алгоритма делает этот метод удобным для его реализации на ЭВМ.   Лит.: Юдин Д. Б., Гольштейн Е. Г., Линейное программирование, М., 1969.   В. Г. Карманов. Линейное пространство Лине'йное простра'нство, тоже, что векторное пространство. В функциональном анализе рассматриваются главным образом бесконечномерные пространства. Примером бесконечномерного Л. п. может служить пространство всех многочленов (с вещественными или комплексными коэффициентами) при обычном определении сложения и умножения на числа. Одним из первых примеров бесконечного Л. п. были гильбертово пространство и пространство С [а, b] непрерывных функций, заданных на отрезке [а, b]

скачать реферат Решение систем линейных алгебраических уравнений методом Гаусса и Зейделя

Содержание Введение 1 1. Теоретическая часть 1 1.1. Метод Гаусса 1 1.2. Метод Зейделя 4 1.3. Сравнение прямых и итерационных методов 6 2. Практическая часть 7 2.1 Программа решения системы линейных уравнений по методу Гаусса 7 2.2 Программа решения системы линейных уравнений по методу Зейделя 10 Введение Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности – нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма. Одна из трудностей практического решения систем большой размерности связанна с ограниченностью оперативной памяти ЭВМ. Хотя обьем оперативной памяти вновь создаваемых вычислительных машин растет очень быстро, тем не менее, еще быстрее возрастают потребности практики в решении задач все большей размерности.

Бумага для пишущих машин, А3, 2500 листов.
Бумага предназначена для использования в минитипографиях, печати на ризогрофах и т.д. Формат А3. Цвет – серый Плотность бумаги – 48
888 руб
Раздел: Формата А3 и больше
Заварочный чайник "Mayer & Boch", стекло 900 мл + сито.
Заварочный чайник MAYER BOCH изготовлен из термостойкого боросиликатного стекла, фильтр выполнены из нержавеющей стали. Изделия из стекла
417 руб
Раздел: Чайники заварочные
Коврик для выпечки силиконовый, 38х28 см.
Материал: силикон. Размер: 38х28 см. Цвет в ассортименте, без возможности выбора.
377 руб
Раздел: Коврики силиконовые для выпечки
 История вычислительной техники в лицах

Разработка проекта машины МИР-1 отличалась огромным творческим накалом и интенсивным взаимодействием специалистов различного профиля,P вспоминает участник работ А.А. Летичевский.P Помню, как рождался входной язык машины (я в коллективе был самым языкатым и поэтому больше всего занимался разработкой языковых средств различного уровня). После интенсивных мозговых штурмов, вдохновляемых безграничной научной фантазией Виктора Михайловича, принимались очередные решения по структуре языка, которые затем проверялись на примерах конкретных задач. Первоначально язык развивался в направлении алгебраических спецификаций вычислительных схем. Юрий Владимирович Благовещенский предлагал все новые и новые вычислительные методы, а Алла Дородницына записывала соответствующие определения в языке. И каждый раз чего-нибудь недоставало. Например, допустимые схемы рекурсивных определений позволяли записать простую итерацию для решения систем линейных уравнений, но как быть с Зейделевской? Я, как теоретик, черпал идеи из известной в то время книги Петер Рекурсивные функции, и вскоре все стандартные типы рекурсий (возвратная, повторная и пр.) были включены в язык

скачать реферат Геофизический “диалект” языка математики

Результаты, полученные в рамках математической физики для конечномерных аналитических объектов и задач (теоремы единственности, теоремы сходимости и т.д.) используются в ограниченном объеме. Основное значение придается разработке единого аппроксимационного подхода к построению решений бесконечномерных задач, т.е. переходу от бесконечномерных объектов и задач к конечномерным, которым придается определяющее значение. Решаемые конечномерные задачи также подразделяются на корректно и некорректно поставленные, основное значение придается проблеме нахождения приближенных решений линейных некорректно поставленных задач, т.е. нахождения приближенных решений систем линейных алгебраических уравнений с приближенными данными. При этом главной целью всех теоретических построений является создание эффективных компьютерных технологий. 6. Переходим к характеристике установок второго типа. А. В математической физике и классической теории некорректных задач, хотя и принимается, что решения некорректных задач могут быть получены лишь при использовании так называемой априорной (дополнительной) информации о свойствах искомого решения и помех во входных данных, однако фактически принимается стратегия использования минимальных объемов априорной информации.

 Большая Советская Энциклопедия (ЛА)

Лапласом в ряде работ, которые объединены в его книге «Аналитическая теория вероятностей», вышедшей в 1812. Значительно раньше (в 1737) такие интегралы применял к решению дифференциальных уравнений Л. Эйлер.   При некоторых условиях, указанных ниже, Л. п. определяет функцию f (t) однозначно, в простейших случаях — по формуле обращения:    (2)   Л. п. является линейным функциональным преобразованием. Из числа основных формул Л. п. можно отметить следующие:   ,   , n = 1, 2, …,   , t >0.   Л. п. в сочетании с формулой (2) его обращения применяется к интегрированию дифференциальных уравнений. В частности, в силу свойства (1) и линейности, Л. п. решения обыкновенного линейного дифференциального уравнения с постоянными коэффициентами удовлетворяет алгебраическому уравнению 1-й степени и может быть, следовательно, легко найдено. Так, если, например, у’’ + у = f (t), y (0) = y’ (0) = 0   и Y (p) = L [y], F (p) = L [f],   то L [y’’] = p2Y (p)   и p2Y (p) + Y (p) = F (p),   откуда     Многочисленные задачи электротехники, гидродинамики, механики, теплопроводности эффективно решаются методами, использующими Л. п.   Л. п. нашло особенно широкое применение в обосновании операционного исчисления, в котором обычно вместо Л. п

скачать реферат Задача обработки решеток

Остановимся на указанных чертах метода несколько подробнее. Единство подходов к большому кругу задач означает, как видно из гл. 2 и 3, что интегральные уравнения, эквивалентные различным граничным задачам электродинамики, составляются по одному и тому же стереотипу. При этом для задач на телах вращения нет необходимости проходить стадию уравнений для произвольных тел. Истокообразные представления (3.8) и (3.9) вместе с формулами для элементов тензорной функции Грина позволяют" легко и быстро, примерно так же как из крупных блоков строят дома, составлять необходимые уравнения. Те же «крупные блоки» в виде подпрограмм для -функции для элементов тензора Грина и решения систем линейных алгебраических уравнений позволяют достаточно быстро и просто компоновать программы для всех сформулированных в книге задач и для многих других. Те же подпрограммы дают возможность после численного решения уравнений найти поле в любой точке пространства. 3 МЕТОД СВЧ КОНТРОЛЯ ПАРАМЕТРОВ ПОЛИМЕРОВ Для контроля технологических параметров полимеров (качества смещения, определение включений, вязкости) находят применение радиоволновые метода СВЧ.

скачать реферат Применение новейших экономико-математических методов для решения задач

Для получения результата нажмем одновременно клавиши Shif /C rl/E er (рис.14.). рис.14. 2.5 Умножение матрицы на число Для умножения матрицы на число следует выполнить следующие действия: 1. Задать исходную матрицу. 2. Отметить место для матрицы-результата. 3. В выделенном под результат месте электронной таблицы записать произведение так, как показано на рис.15. рис.15. 4. Завершить выполнение работы нажатием клавиш Shif /C rl/E er (рис.16.). рис.16. 2.6 Сложение матриц Для сложения двух матриц одинаковой размерности следует выполнить следующую последовательность действий: 1.Задать две исходные матрицы. 2.Отметить место для матрицы-результата. 3.В выделенном под результат месте электронной таблицы записать сумму так, как показано на рис.17. рис.17. 4.Завершить выполнение работы нажатием клавиш Shif /C rl/E er (рис.18.). рис.18. 2.7 Вычисление определителя матрицы Для вычисления определителя матрицы сформируем лист электронной таблицы: 1.Определим исходную матрицу. 2.Определим место под результат. 3.Обратимся к мастеру функций, найдем функцию МОПРЕД , выполним постановку задачи (рис.19.). рис.19. 4.Щелкнув по кнопке ОК, получим значение определителя (рис.20.). рис.20. 2.8 Системы линейных алгебраических уравнений Задание #5 Решение систем линейных алгебраических уравнений всегда занимало математиков и для их решения было разработано немало численных методов, подразделяющихся на прямые и итерационные.

скачать реферат ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы алгебраических уравнений

Операции численного решения системы линейных алгебраических уравнений2.1 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Гаусса) a11 x4 Решение системы линейных алгебраических уравнений выполним методом последовательного исключения неизвестных (метод Гаусса). Увеличим для более точных расчётов число знаков после запятой: В результате будем иметь систему, решение которой определит неизвестные для произвольного значения х4 : Выводы по работе №2 В результате выполнения практического занятия №2 были изучены некоторые возможности математического пакета Ma hCad в среде Wi dows 98 для использования матричной алгебры и решения системы линейных алгебраических уравнений, а также изучены методы решения систем линейных алгебраических уравнений. В процессе работы я научился: Задавать шаблоны матриц и векторов. Работать с массивами, векторами и матрицами. Решать системы линейных алгебраических уравнений различными методами. Интересно признать, что решение систем уравнений в курсе высшей математики занимало большое количество времени. Например, решение системы методом последовательного исключения неизвестных (метод Гаусса) довольно громоздкий для ручного расчёта и намного быстрее производится с помощью Ma hCad , причём с точностью до 18 знаков после запятой.

скачать реферат Методы решения алгебраических уравнений

Метод деления отрезка пополам. Метод касательных. Комбинированный метод хорд и касательных Задача о нахождения приближенных значений действительных корней уравнения f(x)=0 предусматривает предварительное отделение корня, т.е. установление промежутка, в котором других корней данного уравнения нет. Будем предполагать, что функция f(x) в промежутке непрерывна вместе со своим производным f =f(x, y) при начальном условии y(x0)=y0. При численном интегрировании такого уравнения методом Рунге – Кутта определяют четыре числа: Если положить то можно доказать что Схема вычислений имеет вид Добавка 5. Практический раздел 1.Решение не линейных уравнений. 1. Отделить корни графический и уточнить один из них методом касательных с точностью x 0 1 2 3 4 5 6 7 Si gf(x) - - - - - - - т.к. то x1=6,488 x2=6,401 x3=6,39756 x4=6,397567 2. Решение систем линейных алгебраических уравнений. 1. Решить систему методом Жордана – Гаусса

Фоторамка пластиковая "Poster black", 40x60 см.
Для фотографий размером 40 х 60 см. Материал рамки - пластик. Цвет - черный. Материал подложки - плотный картон. Крепежи позволяют
848 руб
Раздел: Размер 40x60 (А2)
Банки для сыпучих продуктов (3 штуки) и ложки "Birds" 8,5х12 см, 350 см.
Банки для сыпучих продуктов (3 штуки) и ложки "Birds" станут незаменимым атрибутом приготовления пищи. Прекрасно впишутся в
642 руб
Раздел: Наборы
Шарики для бассейна, 500 штук.
Шариками можно наполнить бассейн, манеж, игровую палатку или домик. Материал: безопасный, экологически чистый пластик. Диаметр шара 7 см.
3027 руб
Раздел: Шары для бассейна
скачать реферат Вычислительная математика

СодержаниеВведение Тема 1. Решение задач вычислительными методами. Основные понятия 1.1 Погрешность 1.2 Корректность 1.3 Вычислительные методы Тема 2. Решение нелинейных уравнений 2.1 Постановка задачи 2.2 Основные этапы отыскания решения 2.3 Метод деления отрезка пополам (метод дихотомии, метод бисекции) 2.4 Метод простых итераций 2.5 Метод Ньютона (метод касательных) 2.6 Метод секущих (метод хорд) 2.7 Метод ложного положения Тема 3. Решение систем линейных алгебраических уравнений 3.1 Постановка задачи 3.2 Метод исключения Гаусса. Схема единственного деления 3.3 Метод исключения Гаусса с выбором главного элемента по столбцу 3.4 Вычисление определителя методом исключения Гаусса 3.5 Вычисление обратной матрицы методом исключения Гаусса 3.6 Метод простой итерации Якоби 3.7 Метод Зейделя Тема 4. Приближение функций 4.1 Постановка задачи 4.2 Приближение функции многочленами Тейлора 4.3 Интерполяция функции многочленами Лагранжа 4.4 Аппроксимация функций. Метод наименьших квадратов Тема 5. Численное интегрирование функций одной переменной 5.1 Постановка задачи численного интегрирования 5.2 Метод средних прямоугольников 5.3 Метод трапеций 5.4 Метод Симпсона (метод парабол) 5.5 Правило Рунге практической оценки погрешности Тема 6.

скачать реферат Коперник геометрии

Здесь же при решении систем линейных алгебраических уравнений впервые в мировой учебной литературе вводятся определители. В области математического анализа Лобачевский занимался вопросами сходимости («исчезания») рядов и в связи с этим уточнил понятие функции («Об исчезании тригонометрических строк», 1834), разграничил понятия непрерывности и дифференцируемости. Ценные результаты он получил и в теории вероятностей. Существенно отметить, что Лобачевский не был только математиком, замкнувшимся в своей деятельности в одной этой области науки. Для него математика – лишь один из инструментов, позволяющих наиболее глубоко проникнуть в познание закономерностей природы. Науке чисел принадлежит все, что имеет величину; а что в физическом мире ее не имеет? В нем всё существует под необходимым условием быть измеряему и, следовательно, все подчинено законам математики. Посему все естественные науки силятся встать на ту высокую ступень совершенства, на которой последует их соединение с математикой; и со времени сего соединения их успехи пойдут быстрыми шагами вперед.

скачать реферат Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB

Отличительной чертой является входной язык, максимально приближенный к обычному математическому языку. А с Elec ro ics Workbe ch общим является возможность создания моделей как отдельных обьектов так и систем, путём поблочного моделирования и спомощью специальных блоков наблюдать протекающие процессы в модели. 1.3 Возможности, визуализация и графические средства Основной объект системы MA LAB - прямоугольный числовой массив (матрица), в котором допускается применение комплексных элементов. Использование матриц не требует явного указания их размеров. Система MA LAB обеспечивает выполнение операций с векторами и матрицами даже в режиме непосредственных вычислений. Ею можно пользоваться как мощнейшим калькулятором, в котором наряду с обычными арифметическими и алгебраическими действиями могут использоваться такие сложные операции, как обращение матрицы, вычисление ее собственных значений и векторов, решение систем линейных алгебраических уравнений и много других. Характерной особенностью системы является ее открытость, то есть возможность ее модификации и адаптации к конкретным задачам пользователя. Привлекательной особенностью системы MA LAB является наличие встроенной матричной и комплексной арифметики.

скачать реферат Численное решение системы линейных уравнений с помощью метода исключения Гаусса с выбором главного элемента по столбцу

СОДЕРЖАНИЕВведение 1 Постановка задачи 2 Математические и алгоритмические основы решения задачи 2.1 Схема единственного деления 2.1.1 Прямой ход 2.1.2 Обратный ход 2.2 Метод Гаусса с выбором главного элемента по столбцу 3 Функциональные модели и блок-схемы решения задачи 4 Программная реализация решения задачи 5 Пример выполнения программы Заключение Список использованных источников и литературы ВВЕДЕНИЕ Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности – нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма. Одна из трудностей практического решения систем большой размерности связанна с ограниченностью оперативной памяти ЭВМ. Хотя объем оперативной памяти вновь создаваемых вычислительных машин растет очень быстро, тем не менее, еще быстрее возрастают потребности практики в решении задач все большей размерности.

скачать реферат Итерационные методы решения систем линейных алгебраических уравнений

Введение Данная курсовая работа включает в себя три итерационных метода решения систем линейных алгебраических уравнений (СЛАУ): Метод Якоби (метод итераций). Метод Холецкого. Метод верхней релаксации. Также данная курсовая работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования Borla d C Builder 6. Описание метода Метод решения задачи называют итерационным, если в результате получают бесконечную последовательность приближений к решению. Основное достоинство итерационных методов состоит в том, что точность искомого решения задается. Число итераций, которое необходимо выполнить для получения заданной точности , является основной оценкой качества метода. По этому числу проводится сравнение различных методов. Главным недостатком этих методов является то, что вопрос сходимости итерационного процесса требует отдельного исследования. Примером обычных итерационных методов служат: метод итераций (метод Якоби), метод Зейделя, метод верхних релаксаций.

Набор первоклассника, для девочек, 16 предметов.
В наборе 16 предметов: - Подставка для книг. - Настольное покрытие для творчества. - Веер "гласные". - Веер
721 руб
Раздел: Наборы канцелярские
Рапидограф, 0,13 мм.
Чертежный прибор для черчения и рисования на бумаге, ватмане и чертежной пленке. Заправляется одноразовыми патронами. Пишущий узел
1584 руб
Раздел: Циркули, чертежные инструменты
Комплект постельного белья евро "Самойловский текстиль. Незабудка", с наволочками 70х70 см.
Постельное белье "Самойловский текстиль" – отличный подарок себе и близким. Качественное, удобное и красивое постельное белье
1588 руб
Раздел: Бязь
скачать реферат Метод ортогонализации и метод сопряженных градиентов

ВведениеК решению систем линейных алгебраических уравнений приводятся многие задачи численного анализа. Известное из курса высшей алгебры правило Крамера для решения систем линейных алгебраических уравнений практически невыгодно, так как требует слишком большого количества арифметических операций и записей. Поэтому было предложено много различных способов, более пригодных для практики. Используемые практически методы решения систем линейных алгебраических уравнений можно разделить на две большие группы: так называемые точные методы и методы последовательных приближений. Точные методы характеризуются тем, что с их помощью принципиально возможно, проделав конечное число операций, получить точные значения неизвестных. При этом, конечно, предполагается, что коэффициенты и правые части системы известны точно, а все вычисления производятся без округлений. Чаще всего они осуществляются в два этапа. На первом этапе преобразуют систему к тому или иному простому виду. На втором этапе решают упрощенную систему и получают значения неизвестных.

скачать реферат Задача обработки решёток

Этому способствовал целый ряд его преимуществ: простота метода и, следовательно, его доступность; единство подходов к решению весьма широкого круга задач; удобство реализации в виде вычислительных программ алгоритмов, на нем основанных, и, наконец, высокая степень универсальности Остановимся на указанных чертах метода несколько подробнее Единство подходов к большому кругу задач означает, как видно из гл 2 и 3, что интегральные уравнения, эквивалентные различным граничным задачам электродинамики, составляются по одному и тому же стереотипу При этом для задач на телах вращения нет необходимости проходить стадию уравнений для произвольных тел Истокообразные представления (3.8) и (3.9) вместе с формулами для элементов тензорной функции Грина позволяют" легко и быстро, примерно так же как из крупных блоков строят дома, составлять необходимые уравнения Те же «крупные блоки» в виде подпрограмм для -функции для элементов тензора Грина и решения систем линейных алгебраических уравнений позволяют достаточно быстро и просто компоновать программы для всех сформулированных в книге задач и для многих других

скачать реферат Шпаргалка по высшей математике

Система ур-ий называется совместной, если она имеет хотя бы одно решение.13. Решение систем линейных алгебраических ур-ий методом Гаусса.Метод Гаусса: каждую СЛУ при помощи конечного числа преобразований можно превратить в разрешённую системы ур-ий или в систему, содержащую противоречивое ур-е. Противоречивым называется ур-е вида OX1 OX2 . OX =b. Если каждое ур-е системы содержит разрешённое неизвестное, то такую систему называют разрешённой. Неизвестное x1 называют разрешённым, если к.-н. ур-е системы содержит неизвестное x1 с коэффициентом, равным 1, а во все другие ур-я системы неизвестное x1 не входит.14. Матричный метод решения системы линейных алгебраических уравнений.Этим способом можно решить лишь те системы, в которых число неизвестных равно числу уравнений. Алгоритм: 1)Записать матрицу системы (А); 2) Найти обратную матрицу для матрицы системы (А-1); 3) Умножить А-1 на матрицу свободных коэффициентов (В) ( X=A-1(B.15. Однородная система линейных алгебраических уравнений.Система m линейных ур-ий с переменными называется системой линейных однородных уравнений, если все свободные члены равны 0.

скачать реферат Динамическое и линейное программирование

Для ее решения введем дополнительные неотрицательные неизвестные: , (неиспользуемое количество каждого ресурса) Тогда вместо системы неравенств (1.2), получим систему линейных алгебраических уравнений: (1.3) где среди всех решений, удовлетворяющих условию неотрицательности: надо найти решение, при котором функция (1.1) примет наибольшее значение. Эту задачу будем решать методом последовательного улучшения плана – симплексным методом. Воспользуемся тем, что правые части всех уравнений системы (1.3) неотрицательны, а сама система имеет предпочитаемый вид – дополнительные переменные являются базисными. Приравняв к нулю свободные переменные x1, x2, x3, x4, получаем базисное неотрицательное решение: первые четыре компоненты которого представляют производственную программу , по которой пока ничего не производится. Из выражения (1.1) видно, что наиболее выгодно начинать производить продукцию третьего вида, т.к. прибыль на единицу выпущенной продукции здесь наибольшая, поэтому в системе (1.3) принимаем переменную x3 за разрешающую и преобразуем эту систему к другому предпочитаемому виду.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.