телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы
путь к просветлению

РАСПРОДАЖАВсё для хобби -30% Видео, аудио и программное обеспечение -30% Все для ремонта, строительства. Инструменты -30%

все разделыраздел:Математика

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЯТИТОЧЕЧНЫМ МЕТОДОМ АДАМСА – БАШФОРТА

найти похожие
найти еще

Ручка "Шприц", желтая.
Необычная ручка в виде шприца. Состоит из пластикового корпуса с нанесением мерной шкалы. Внутри находится жидкость желтого цвета,
31 руб
Раздел: Оригинальные ручки
Коврик для запекания, силиконовый "Пекарь".
Коврик "Пекарь", сделанный из силикона, поможет Вам готовить вкусную и красивую выпечку. Благодаря материалу коврика, выпечка не
202 руб
Раздел: Коврики силиконовые для выпечки
Мыло металлическое "Ликвидатор".
Мыло для рук «Ликвидатор» уничтожает стойкие и трудно выводимые запахи за счёт особой реакции металла с вызывающими их элементами.
197 руб
Раздел: Ванная
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ “ ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ” Кафедра “Системы и Процессы Управления” ОТЧЕТ о научно-исследовательской курсовой работе по численным методам на тему : « РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЯТИТОЧЕЧНЫМ МЕТОДОМ АДАМСА – БАШФОРТА » Выполнил студент гр.И-29 Уханов Е.В.Руководитель работы Д.т.н. проф Бреславский Д.В. Харьков 2001 СОДЕРЖАНИЕ Введение .3 1. Постановка задачи 4 2. Методы решения . 6 2.1. Метод прогноза и коррекции 6 2.2 Модифицированный метод Гаусса .12 3. Описание алгоритма 14 4. Описание программы .15 5. Примеры расчетов .17 5.1. Решение одного дифференциального уравнения .17 5.2. Решение системы дифференциальных уравнений .19 Заключение 20 Список использованной литературы .21 Приложение 1 22 Приложение 2 23 Приложение 3 24 Приложение 4 25 ВВЕДЕНИЕ Во многих областях науки и техники , а также отраслях наукоемкой промышленности , таких как : авиационная , космическая , химическая , энергетическая , - являются весьма распространенные задачи прогноза протекания процессов , с дальнейшей их коррекцией . Решение такого рода задач связано с необходимостью использования численных методов , таких как : метод прогноза и коррекции , метод Адамса- Башфорта , метод Эйлера , метод Рунге-Кута , и др. При этом , стоит задача решения системы линейных дифференциальных уравнений первого порядка одним из методов интегрирования , на произвольном промежутке времени . Одним из оптимальных методов дающих высокую точность результатов – является пяти точечный метод прогноза и коррекции Адамса-Башфорта . Для повышения точности метода используется трех точечный метод прогноза и коррекции с автоматическим выбором шага , что приводит к универсальному методу интегрирования систем дифференциальных уравнений произвольного вида на любом промежутке интегрирования . Разработка программных средств реализующих расчет точного прогноза протекания процессов , является важнейшей вспомогательной научно- технической задачей . Целью данной курсовой работы является разработка алгоритма решения систем линейных дифференциальных уравнений первого порядка пяти точечным методом прогноза и коррекции Адамса-Башфорта . 1. ПОСТАНОВКА ЗАДАЧИ Рассмотрим произвольную систему линейных дифференциальных уравнений первого порядка : (1.2) где А заданная матрица размером x . - вектор с координатами , который подлежит определению ; – произвольное целое число ; - заданные вектора правых частей с координатами . С использованием метода прогноза и коррекции Адамса-Башфорта пятого порядка , необходимо получить значения неизвестных для заданных временных интервалов . Для стартования метода необходимо использовать метод прогноза и коррекции третьего порядка с переменным шагом , на заданных временных промежутках . 2. МЕТОДЫ РЕШЕНИЯ 2.1. Метод прогноза и коррекции Метод прогноза и коррекции относится к задачам класса Коши , а именно к численным решениям многошаговыми методами . Рассмотрим задачу Коши : (2.1.1) Подставим в (2.1.1) точное решение y(x) , и проинтегрируем это уравнение на отрезке (2.1.2) где в последнем член предполагаем , что p(x) полином , аппроксимирующий f(x,y(x)) .

С помощью метода Эйлера находим дополнительные начальные условия. Решение систем линейных дифференциальных уравнений мы описываем отдельной процедурой , что облегчает дальнейшую алгоритмизацию . Далее составляем цикл , для реализации алгоритма нахождения всех Yk 1 точек на заданном малом промежутке времени , и проверкой на условия Рунге , по трех шаговому методу прогноза и коррекции с авто подбором шага . После чего мы организовываем цикл , реализующий алгоритм нахождения точек по методу Адамса-Башфота , на заданном большом промежутке времени и с шагом автоматически подобранным предыдущим методом . Вычисленные данные записываем файл , по ним формируем массив данных , которые выводим в сответствии с масштабированием на экран в виде графиков . Блок-схема приведена в Приложении 1 . 4.ОПИСАНИЕ ПРОГРАММЫ Программа реализующая универсальный алгоритм для решения систем линейных дифференциальных уравнений первого порядка произвольного вида , - построена по принципам объектно-ориентированного программирования .Основная программа построена на объектной библиотеке VFH , реализующей возможности реализации гибкого интерфейса между программой и пользователем . Основная программа включает в себя только один модуль PACM , и использует всего два метода объекта ApplPa dC , - метод Applica io - рабочий цикл программы ; деструктор Do e – реализует разрушение таблицы виртуальных методов , и операций , связанных с завершением программы . Модуль PACM включает в себя модули библиотек - реализующих построение интерфейса . Модуль реализующий алгоритм метода Адамса-Башфорта , и по вычесленным данным строящий график , есть – PACMB . Главным родителем всех объектов есть объект – objec . Основным рабочим объектом библиотеки VFH есть объект form . Рассмотрим потомка являющегося типичным представителем родителя Form - ApplPa dC . Он имеет два виртуалых метода : MouseHa dler : Boolea Б – выходным параметром которого есть признак закрытия формы , и метод FormCrea e - реализующий построение интерфейса формы . Не виртуальный метод Applica io - предназначен для создания формы , конфигурирования программной среды , и дальнейшего управления программой . Модуль реализующий создание и управления главного и субменю , есть – PACMMe u , позволяющий пользователю изменять параметры и настройки системы , предоставляющий справку о разработчике , а также дает доступ к справочной системе Pra dCo M Help Sys em . Данные свойства меню реализуют объекты Me u , и HelpForm , объектной библиотеки VFH . Теперь рассмотрим модуль PACMB – рреализующий алгоритм построения вычисленных данных . Процедура реализующая алгоритм пяти точечного метода прогноза и коррекции Адамса-Башфорта , - Me hodAdamsaBashfor a ( h, p, a : real ; U : array of real ) – параметры которой представляют : h - начальный шаг интегрирования ; p – время интегрирования трех точечным методом прогноза и коррекции , a – время интегрирования по методу Адамса- Башфорта , U – массив начальных условий . Данная процедура способна производить решения систем линейных дифференциальных уравнений произвольного размера , на произвольном промежутке времени интегрирования .

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Большая Советская Энциклопедия (ЛА)

Лапласом в ряде работ, которые объединены в его книге «Аналитическая теория вероятностей», вышедшей в 1812. Значительно раньше (в 1737) такие интегралы применял к решению дифференциальных уравнений Л. Эйлер.   При некоторых условиях, указанных ниже, Л. п. определяет функцию f (t) однозначно, в простейших случаях — по формуле обращения:    (2)   Л. п. является линейным функциональным преобразованием. Из числа основных формул Л. п. можно отметить следующие:   ,   , n = 1, 2, …,   , t >0.   Л. п. в сочетании с формулой (2) его обращения применяется к интегрированию дифференциальных уравнений. В частности, в силу свойства (1) и линейности, Л. п. решения обыкновенного линейного дифференциального уравнения с постоянными коэффициентами удовлетворяет алгебраическому уравнению 1-й степени и может быть, следовательно, легко найдено. Так, если, например, у’’ + у = f (t), y (0) = y’ (0) = 0   и Y (p) = L [y], F (p) = L [f],   то L [y’’] = p2Y (p)   и p2Y (p) + Y (p) = F (p),   откуда     Многочисленные задачи электротехники, гидродинамики, механики, теплопроводности эффективно решаются методами, использующими Л. п.   Л. п. нашло особенно широкое применение в обосновании операционного исчисления, в котором обычно вместо Л. п

скачать реферат РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЯТИТОЧЕЧНЫМ МЕТОДОМ АДАМСА – БАШФОРТА

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЯТИТОЧЕЧНЫМ МЕТОДОМ АДАМСА – БАШФОРТА Работу выполнил студент гр.И-29 Уханов Е.В. Кафедра “Системы и Процессы Управления” “ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ” Харьков 2001 ВВЕДЕНИЕ Во многих областях науки и техники , а также отраслях наукоемкой промышленности , таких как : авиационная , космическая , химическая , энергетическая  , - являются весьма распространенные задачи прогноза  протекания процессов ,  с дальнейшей их коррекцией . Решение такого рода задач связано с необходимостью использования численных методов , таких как : метод прогноза и коррекции , метод Адамса-Башфорта , метод Эйлера , метод Рунге-Кута , и др.  При этом , стоит задача решения системы линейных дифференциальных уравнений первого порядка одним из методов интегрирования , на произвольном промежутке времени . Одним из оптимальных методов дающих высокую точность результатов – является пяти точечный метод прогноза и коррекции Адамса-Башфорта . Для повышения точности метода используется трех точечный метод прогноза и коррекции с автоматическим выбором шага , что приводит к универсальному методу интегрирования систем дифференциальных уравнений произвольного вида на любом промежутке интегрирования  .

Ножницы "Pigeon" для ногтей новорожденных.
Ножницы для ногтей новорожденных "Pigeon" благодаря маленьким закругленным и тонким лезвиям, позволяют подстригать ногти малыша
721 руб
Раздел: Маникюрные наборы детские
Точилка механическая "Classic", синяя.
Цветной пластиковый корпус с прозрачным контейнером, объемный контейнер для стружки, стальные самозатачивающиеся ножки. Размеры: 91x88x4 мм.
317 руб
Раздел: Точилки
Карандаши металлик, трехгранные, 12 цветов.
Карандаши цветные металлик. Трехгранные. Удобно точить. Прочный грифель. Количество цветов: 12. В ассортименте, без возможности выбора.
324 руб
Раздел: 7-12 цветов
 Большая Советская Энциклопедия (ЛИ)

Симплексный метод состоит в таком направленном переборе вершин, при котором значение целевой функции возрастает от вершины к вершине. Каждой вершине соответствует система уравнений, выбираемая спец. образом из системы неравенств (2) — (3), поэтому вычислительная процедура симплексного метода состоит в последовательном решении систем линейных алгебраических уравнений. Простота алгоритма делает этот метод удобным для его реализации на ЭВМ.   Лит.: Юдин Д. Б., Гольштейн Е. Г., Линейное программирование, М., 1969.   В. Г. Карманов. Линейное пространство Лине'йное простра'нство, тоже, что векторное пространство. В функциональном анализе рассматриваются главным образом бесконечномерные пространства. Примером бесконечномерного Л. п. может служить пространство всех многочленов (с вещественными или комплексными коэффициентами) при обычном определении сложения и умножения на числа. Одним из первых примеров бесконечного Л. п. были гильбертово пространство и пространство С [а, b] непрерывных функций, заданных на отрезке [а, b]

скачать реферат Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса – Башфорта

Вычисленные данные записываем файл , по ним формируем массив данных , которые выводим в сответствии с масштабированием на экран в виде  графиков . Блок-схема приведена в  Приложении 1 . 4.ОПИСАНИЕ ПРОГРАММЫ Программа реализующая универсальный алгоритм для решения  систем линейных дифференциальных уравнений первого порядка произвольного вида , - построена по принципам  объектно-ориентированного программирования .Основная программа построена на объектной библиотеке VFH  , реализующей возможности реализации гибкого интерфейса между программой и пользователем . Основная программа включает в себя только один модуль PACM , и использует всего два метода объекта ApplPa dC   , -  метод  Applica io   - рабочий цикл программы  ; деструктор Do e – реализует разрушение таблицы виртуальных методов  , и операций , связанных с завершением программы . Модуль PACM включает в себя модули библиотек  - реализующих построение интерфейса  . Модуль реализующий алгоритм метода Адамса-Башфорта , и по вычесленным данным строящий график , есть – PACMB .

 Большая Советская Энциклопедия (СО)

При решении многих задач математической физики (в теории колебаний, теплопроводности и т.д.) возникает необходимость в нахождении не равных тождественно нулю решений однородных линейных дифференциальных уравнений L (y) = lу, удовлетворяющих тем или иным краевым условиям. Такие решения называют С. ф. задачи, а соответствующие значения l — собственными значениями. Если дифференциальное уравнение с соответствующими краевыми условиями самосопряжённое (см. Самосопряжённое дифференциальное уравнение), то его собственные значения действительны, а С. ф., соответствующие различным собственным значениям, ортогональны. Если дифференциальное уравнение рассматривается на конечном отрезке и его коэффициенты не имеют на этом отрезке особенностей, то множество С. ф. счётно (задача имеет дискретный спектр); знание С. ф. и соответствующих собственных значений позволяет тогда при некоторых условиях получить решение задачи в виде ряда по С. ф. (см. Фурье метод). Если же уравнение рассматривается на бесконечном промежутке или его коэффициенты имеют особенности (например, если коэффициент при старшей производной обращается в нуль), может существовать континуум С. ф., и вместо разложения в ряд получается разложение в интеграл по С. ф., аналогичное представлению в виде Фурье интеграла

скачать реферат Итерационные методы решения систем линейных алгебраических уравнений

Введение Данная курсовая работа включает в себя три итерационных метода решения систем линейных алгебраических уравнений (СЛАУ): Метод Якоби (метод итераций). Метод Холецкого. Метод верхней релаксации. Также данная курсовая работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования Borla d C Builder 6. Описание метода Метод решения задачи называют итерационным, если в результате получают бесконечную последовательность приближений к решению. Основное достоинство итерационных методов состоит в том, что точность искомого решения задается. Число итераций, которое необходимо выполнить для получения заданной точности , является основной оценкой качества метода. По этому числу проводится сравнение различных методов. Главным недостатком этих методов является то, что вопрос сходимости итерационного процесса требует отдельного исследования. Примером обычных итерационных методов служат: метод итераций (метод Якоби), метод Зейделя, метод верхних релаксаций.

скачать реферат Решение систем дифференциальных уравнений

Реферат на тему: 1.Дифференциальная линейная алгебра С собственными значениями и векторами матрицы приходится иметь дело в задачах, связанных с решением систем линейных дифференциальных уравнений и исследованием устойчивости этих решений. Дифференциальная векторно-матричная алгебра включает в себя операции интегрирования и дифференцирования, которые во множестве случаев в своей нотации напоминают соответствующие операции обычного дифференциального исчисления. Производная по скалярной переменной и интеграл от вектора и матрицы в заданных пределах изменения скалярной переменной определены так: Производные от векторных и векторно-матричных выражений определяются следующими правилами: , , , , . 2. Векторное решение однородного уравнения Пусть система линейных однородных дифференциальных уравнений задана в векторной форме: Если уравнение записано в форме однородного дифференциального уравнения -го порядка и его характеристический многочлен имеет различные корни, то общее решение представляется суммой частных решений с экспоненциальными базовыми функциями: , где – константы, определяемые начальными условиями.

скачать реферат Методы решения алгебраических уравнений

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Московский автомобильно-дорожный институт (ГТУ) МФ Факультет «АТ» Кафедра «О и БД» КУРСОВАЯ РАБОТА по предмету «Прикладная Математика»Выполнил студент 2ЭТ гр. Мусиев Г.М. Проверил преподаватель Баламирзоев А.Г. Махачкала 2008 г. Оглавление Введение 1. Решение нелинейных уравнений. Метод деления отрезка пополам. Метод касательных. Комбинированный метод хорд и касательных 2. Решение систем линейных алгебраических уравнений. Методом Крамера. Методом Гаусса. Метод Жордана Гаусса. Метод Зейделя 3. Математическая обработка результатов опыта. Аппроксимация функций. Полином Лагранжа. Метод наименьших квадратов 4. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера. Метод Рунге – Кутта 5. Практический раздел Введение В достаточно общем случае процесс решения прикладных задач состоит из следующих этапов: 1. постановка задачи и построение математической модели (этап моделирования); 2. выбор метода и разработка алгоритма (этап алгоритмизации) ; 3. запись алгоритма на языке, понятном ЭВМ (этап программирования); 4. отладка и исполнение программы на ЭВМ (этап реализации); 5. анализ полученных результатов (этап интерпретации).

скачать реферат Решение систем линейных алгебраических уравнений методом Гаусса и Зейделя

Содержание Введение 1 1. Теоретическая часть 1 1.1. Метод Гаусса 1 1.2. Метод Зейделя 4 1.3. Сравнение прямых и итерационных методов 6 2. Практическая часть 7 2.1 Программа решения системы линейных уравнений по методу Гаусса 7 2.2 Программа решения системы линейных уравнений по методу Зейделя 10 Введение Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности – нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма. Одна из трудностей практического решения систем большой размерности связанна с ограниченностью оперативной памяти ЭВМ. Хотя обьем оперативной памяти вновь создаваемых вычислительных машин растет очень быстро, тем не менее, еще быстрее возрастают потребности практики в решении задач все большей размерности.

Рюкзак детский "Pixie Crew" с силиконовой панелью для картинок (розовый, цветной горох).
Повседневные вещи кажутся скучными и однотонными, а тебе хочется выглядеть стильно и быть не как все? "Pixie Crew" сделает твою
1581 руб
Раздел: Детские
Флаг "Россия", шёлк, 90х135 см.
Размер: 90х135 см.
479 руб
Раздел: Наградная продукция
Лоток для бумаг горизонтальный "Сити", черный.
Лотки надёжно стыкуются друг с другом металлическими стержнями 6 см. Вместительная и прочная конструкция. Для листов формата А4. Гладкая
640 руб
Раздел: Подставки, лотки для бумаг, футляры
скачать реферат Шпаргалка по высшей математике

Система ур-ий называется совместной, если она имеет хотя бы одно решение.13. Решение систем линейных алгебраических ур-ий методом Гаусса.Метод Гаусса: каждую СЛУ при помощи конечного числа преобразований можно превратить в разрешённую системы ур-ий или в систему, содержащую противоречивое ур-е. Противоречивым называется ур-е вида OX1 OX2 . OX =b. Если каждое ур-е системы содержит разрешённое неизвестное, то такую систему называют разрешённой. Неизвестное x1 называют разрешённым, если к.-н. ур-е системы содержит неизвестное x1 с коэффициентом, равным 1, а во все другие ур-я системы неизвестное x1 не входит.14. Матричный метод решения системы линейных алгебраических уравнений.Этим способом можно решить лишь те системы, в которых число неизвестных равно числу уравнений. Алгоритм: 1)Записать матрицу системы (А); 2) Найти обратную матрицу для матрицы системы (А-1); 3) Умножить А-1 на матрицу свободных коэффициентов (В) ( X=A-1(B.15. Однородная система линейных алгебраических уравнений.Система m линейных ур-ий с переменными называется системой линейных однородных уравнений, если все свободные члены равны 0.

скачать реферат Решение систем линейных алгебраических уравнений

Решение систем линейных алгебраических уравнений Введение Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности – нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма. Одна из трудностей практического решения систем большой размерности связанна с ограниченностью оперативной памяти ЭВМ. Хотя обьем оперативной памяти вновь создаваемых вычислительных машин растет очень быстро, тем не менее, еще быстрее возрастают потребности практики в решении задач все большей размерности. В значительной степени ограничения на размерность решаемых систем можно снять, если использовать для хранения матрицы внешние запоминающие устройства.

скачать реферат Задача обработки решеток

Остановимся на указанных чертах метода несколько подробнее. Единство подходов к большому кругу задач означает, как видно из гл. 2 и 3, что интегральные уравнения, эквивалентные различным граничным задачам электродинамики, составляются по одному и тому же стереотипу. При этом для задач на телах вращения нет необходимости проходить стадию уравнений для произвольных тел. Истокообразные представления (3.8) и (3.9) вместе с формулами для элементов тензорной функции Грина позволяют" легко и быстро, примерно так же как из крупных блоков строят дома, составлять необходимые уравнения. Те же «крупные блоки» в виде подпрограмм для -функции для элементов тензора Грина и решения систем линейных алгебраических уравнений позволяют достаточно быстро и просто компоновать программы для всех сформулированных в книге задач и для многих других. Те же подпрограммы дают возможность после численного решения уравнений найти поле в любой точке пространства. 3 МЕТОД СВЧ КОНТРОЛЯ ПАРАМЕТРОВ ПОЛИМЕРОВ Для контроля технологических параметров полимеров (качества смещения, определение включений, вязкости) находят применение радиоволновые метода СВЧ.

скачать реферат Применение новейших экономико-математических методов для решения задач

Для получения результата нажмем одновременно клавиши Shif /C rl/E er (рис.14.). рис.14. 2.5 Умножение матрицы на число Для умножения матрицы на число следует выполнить следующие действия: 1. Задать исходную матрицу. 2. Отметить место для матрицы-результата. 3. В выделенном под результат месте электронной таблицы записать произведение так, как показано на рис.15. рис.15. 4. Завершить выполнение работы нажатием клавиш Shif /C rl/E er (рис.16.). рис.16. 2.6 Сложение матриц Для сложения двух матриц одинаковой размерности следует выполнить следующую последовательность действий: 1.Задать две исходные матрицы. 2.Отметить место для матрицы-результата. 3.В выделенном под результат месте электронной таблицы записать сумму так, как показано на рис.17. рис.17. 4.Завершить выполнение работы нажатием клавиш Shif /C rl/E er (рис.18.). рис.18. 2.7 Вычисление определителя матрицы Для вычисления определителя матрицы сформируем лист электронной таблицы: 1.Определим исходную матрицу. 2.Определим место под результат. 3.Обратимся к мастеру функций, найдем функцию МОПРЕД , выполним постановку задачи (рис.19.). рис.19. 4.Щелкнув по кнопке ОК, получим значение определителя (рис.20.). рис.20. 2.8 Системы линейных алгебраических уравнений Задание #5 Решение систем линейных алгебраических уравнений всегда занимало математиков и для их решения было разработано немало численных методов, подразделяющихся на прямые и итерационные.

скачать реферат ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы алгебраических уравнений

Операции численного решения системы линейных алгебраических уравнений2.1 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Гаусса) a11 x4 Решение системы линейных алгебраических уравнений выполним методом последовательного исключения неизвестных (метод Гаусса). Увеличим для более точных расчётов число знаков после запятой: В результате будем иметь систему, решение которой определит неизвестные для произвольного значения х4 : Выводы по работе №2 В результате выполнения практического занятия №2 были изучены некоторые возможности математического пакета Ma hCad в среде Wi dows 98 для использования матричной алгебры и решения системы линейных алгебраических уравнений, а также изучены методы решения систем линейных алгебраических уравнений. В процессе работы я научился: Задавать шаблоны матриц и векторов. Работать с массивами, векторами и матрицами. Решать системы линейных алгебраических уравнений различными методами. Интересно признать, что решение систем уравнений в курсе высшей математики занимало большое количество времени. Например, решение системы методом последовательного исключения неизвестных (метод Гаусса) довольно громоздкий для ручного расчёта и намного быстрее производится с помощью Ma hCad , причём с точностью до 18 знаков после запятой.

Глобус физико-политический "Falcon" с подсветкой, диаметр 400 мм.
Глобус для занятий по географии на подставке. Встроенная подсветка помогает увидеть даже самые мелкие детали. В комплект входит
4350 руб
Раздел: Глобусы
Подставка для канцелярских принадлежностей "Башня", металлическая, 4 секции, черная.
Подставка для письменных принадлежностей, металлическая, сетка. Цвет: черный. Размер: 16х8х11 см.
355 руб
Раздел: Подставки, лотки для бумаг, футляры
Пазл "Пожарные", 45 элементов.
Многообразие форм вырубки и различные размеры отдельных элементов способствуют развитию мелкой моторики у малышей. Сделанные из
548 руб
Раздел: Пазлы (5-53 элементов)
скачать реферат Вычислительная математика

СодержаниеВведение Тема 1. Решение задач вычислительными методами. Основные понятия 1.1 Погрешность 1.2 Корректность 1.3 Вычислительные методы Тема 2. Решение нелинейных уравнений 2.1 Постановка задачи 2.2 Основные этапы отыскания решения 2.3 Метод деления отрезка пополам (метод дихотомии, метод бисекции) 2.4 Метод простых итераций 2.5 Метод Ньютона (метод касательных) 2.6 Метод секущих (метод хорд) 2.7 Метод ложного положения Тема 3. Решение систем линейных алгебраических уравнений 3.1 Постановка задачи 3.2 Метод исключения Гаусса. Схема единственного деления 3.3 Метод исключения Гаусса с выбором главного элемента по столбцу 3.4 Вычисление определителя методом исключения Гаусса 3.5 Вычисление обратной матрицы методом исключения Гаусса 3.6 Метод простой итерации Якоби 3.7 Метод Зейделя Тема 4. Приближение функций 4.1 Постановка задачи 4.2 Приближение функции многочленами Тейлора 4.3 Интерполяция функции многочленами Лагранжа 4.4 Аппроксимация функций. Метод наименьших квадратов Тема 5. Численное интегрирование функций одной переменной 5.1 Постановка задачи численного интегрирования 5.2 Метод средних прямоугольников 5.3 Метод трапеций 5.4 Метод Симпсона (метод парабол) 5.5 Правило Рунге практической оценки погрешности Тема 6.

скачать реферат Метод Хемминга

A, U ,K - векторы -го порядка; l=1, 2; m=1 при l=1; m=1,1/2 при l=2; A(l)i-1=Y(l)i-1; A(2)i-1/2=U(2)i-1/2.   Характеристика программы. Программа состоит из стандартной информативы, реализующей описанный метод, рабочей информативы, задающей правые части уравнений системы и директивы. Длина стандартной информативы 1600 символов. Объем исходных данных : 7 чисел, 2 массива, функций. В результате работы программы на печать выводится на участке "разгона" X, значения функций и производных, далее X, G и Y на всем отрезке интегрирования через Ю шагов и в конце отрезка. Программа рекомендуется для решения систем обыкновенных дифференциальных уравнений на больших отрезках, так как считает быстрее одноточечных методов. Для контроля постоянно выводится погрешность вычислений G, которая позволяет следить за точностью решения. "Разгон" (нахождение значений функций и производных в точках X0, X0 Q, X0 2 Q , X0 3 Q, где Q - шаг интегрирования )осуществляется методом Рунге-Кутта с увеличенной разрядностью. В программе предусмотрена возможность при получении большой погрешности вычисления в точка "разгона" уменьшить шаг интегрирования в этих точках (см. способ задания J), а при быстром возрастании погрешности вычислений G уменьшить шаг интегрирования методом Хемминга или увеличить разрядность вычислений.

скачать реферат Разработка программы поиска решения системы дифференциальных уравнений двумя методами: Рунге-Кутта и Рунге-Кутта-Мерсона

Выбор метода решения посредствам меню, при помощи клавиш управления курсором. Таким образом, программа должна обеспечивать возможность: выбора пользователем численного метода поиска решения системы дифференциальных уравнений; предоставить пользователю возможность получить краткую справку о программе; вывода результатов вычисления на дисплей в удобном для восприятия виде. В результате сформулируем следующую задачу по созданию программы: вид системы дифференциальных уравнений должен задаваться в подпрограмме – процедуре; вид правой части уравнений должен задаваться в подпрограмме – функции; программа после загрузки должна выводить на дисплей исходное окно-заставку, в которой отображаются общие сведения о статусе программы и её авторе; после выполнения указанной в строке подсказки процедуры перехода должно выводиться вертикальное меню с пунктами: «Справка», «Метод Рунге-Кутта», «Метод Рунге-Кутта-Мерсона» и «Выход» при выборе в меню пункта «Справка» должна выводиться краткая справка о назначении программы; после выбора в меню варианта численного метода должно открываться отдельное окно, в котором будут вводиться начальные условия и выводиться результат поиска выбранным методом; при выборе пункта меню «Выход» программы должна завершать работу. 2. Математическая формулировка задачи Задача Коши заключается в решении систем обыкновенных дифференциальных уравнений (1) первого порядка, представляемых в виде: (1.1) Где j=1 -номер каждой зависимой переменной yj, x-независимая переменная . Решение системы (1.1) при заданных начальных условиях x=x0, y1(x0)=y10, ,y2(x0)=y20, y (x0)=y 0 сводиться к нахождению зависимостей (интегральных кривых) y1(x), ,y2(x), y (x), проходящих через точки (x0,y10), (x0,y20), , (x0,y 0).

скачать реферат Численное решение системы линейных уравнений с помощью метода исключения Гаусса с выбором главного элемента по столбцу

СОДЕРЖАНИЕВведение 1 Постановка задачи 2 Математические и алгоритмические основы решения задачи 2.1 Схема единственного деления 2.1.1 Прямой ход 2.1.2 Обратный ход 2.2 Метод Гаусса с выбором главного элемента по столбцу 3 Функциональные модели и блок-схемы решения задачи 4 Программная реализация решения задачи 5 Пример выполнения программы Заключение Список использованных источников и литературы ВВЕДЕНИЕ Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности – нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма. Одна из трудностей практического решения систем большой размерности связанна с ограниченностью оперативной памяти ЭВМ. Хотя объем оперативной памяти вновь создаваемых вычислительных машин растет очень быстро, тем не менее, еще быстрее возрастают потребности практики в решении задач все большей размерности.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.