![]() 978 63 62 |
![]() |
Сочинения Доклады Контрольные Рефераты Курсовые Дипломы |
РАСПРОДАЖА |
все разделы | раздел: | Промышленность и Производство | подраздел: | Техника |
Астрономия | ![]() найти еще |
![]() Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок |
В III тысячелетии до н.э. аккадский царь Саргон и предпринял повидимому первую в человеческой истории попытку завоевания мирового господства и создания "нового мирового порядка". Именно с той поры и до сегодняшнего дня они не могут угомониться. В какой форме и как - не известно, но с этим народом за 3000 лет до н.э. соединился так называемый протохалдейский (также несемитский) элемент. Эра Тельца - расцвет халдейской культуры и царств Аккада и Шумера. Это эра успехов картографии (но до ее математической основы и топографии еще далеко), гидротехники и гидротехнологии, связанной с ними астрономии (для предсказаний разливов рек), астрологии и составления первых зодиакальных созвездий, животноводства и мотыжного земледелия в субтропическом климатическом поясе на мягких (поддающихся деревянному "инструменту") увлажняемых сверхплодородных почвах речных долин, огражденных от непрошенных гостей труднопроходимыми горами, пустынями и морями и, благодаря этому всему, - появления и сохранения избыточного (сверх собственно прокормочного) сельскохозяйственного продукта, сделавшего выгодным не поедание и убийство пленников, а обращение их в рабов (в "живых убитых", как они именуются в "официальных документах"), социально-экономическая основа расцвета жречества и появления чиновничества и "внутренних силовых структур", т.е. - возникновения рабовладельческих государственных образований по долинам Нила, Евфрата, Тигра, Инда и Хуанхэ - возникновения цивилизаций Древнего Востока
ПРИБЛИЖАЕТСЯ В солнечной системе несколько миллионов комет, но каждый год исследователи замечают лишь несколько из них: чаще - в телескоп, реже - невооруженным глазом. И уж совсем редко, раз а несколько десятков лет, на небе появляются такие экземпляры, как этот. Комету Хейла-Боппа С/1995 01 открыли два американских наблюдателя в июле 1995г. на очень большом расстоянии от Земля - 7,2 астрономические единицы, или больше миллиарда километров. До прохождения кометой перигелия - ближайшей к Солнцу точки ее орбиты - оставалось еще полтора года, и это позволило астрономам хорошо подготовиться к наблюдениям. В первой половине прошлого года комета была видна только в телескопы, а с января нынешнего уже появилась на утреннем небе. Направляясь от созвездия Орла к созвездию Лебедя, а далее - в созвездие Андромеды, комета в конце марта сместится на вечернее небо. Начиная с апреля наблюдатели, живущие в средних и северных широтах, смогут видеть комету всю ночь. Астрономы утверждают, что мы имеем дело с очень ярким объектом.
Алексеенко Сергей & Арнаудов Дмитрий Человек и вселенная Сергей Алексеенко 33. ГРОЗИЛ ЛИ НАМ АПОКАЛИПСИС В ИЮЛЕ 1994-го? В марте 1993 года американские астрономы К. и Ю. Шумейкеры и Д. Леви обнаружили комету, которая в июле 1994 года должна была столкнуться с планетой Юпитер. Предстоящий космический катаклизм всколыхнул население нашей планеты, обеспокоенное человечество с тревогой прислушивалось к многочисленным прогнозам-сценариям, авторы которых договаривались даже до того, что комета может сбить Юпитер с орбиты, что должно будто бы повести к его развалу и последующему разрушению всей Солнечной системы и наступлению Апокалипсиса на Земле. И вот встреча состоялась, но вопреки прогнозам все было просто и буднично: несколько кусков распавшейся в полете кометы, как булыжники в лужу, шлепнулись в толстенную атмосферу Юпитера и утонули в ней. "Скучно и неинтересно!" - так отозвался о событии один журналист. Для меня же оно оказалось подтверждением давным-давно разработанной теории фантовой физики... Когда знакомые спрашивали меня, что произойдет при ударе кометы по Юпитеру, я отвечал: "То же самое, что происходит при падении камня в лужу",- то есть нечто, мало согласующееся с утверждениями официальной науки
В поисках системы мира. Первые астрономы и их системы. I. Введение. Звездное небо во все времена занимало воображение людей. Почему зажигаются звезды? Сколько их сияет в ночи? Далеко ли они от нас? Есть ли границы у звездной Вселенной? С глубокой древности человек задумывался над этими и многими другими вопросами, стремился понять, и осмыслить устройство того большого мира, в котором мы живем. Самые ранние представления людей о нем сохранились в сказках и легендах. Прошли века и тысячелетия, прежде чем возникла и получила глубокое обоснование и развитие наука о Вселенной, раскрывшая нам замечательную простоту, удивительный порядок мироздания. Недаром еще в древней Греции ее называли Космосом а это слово первоначально означало “порядок” и “красоту”. Системы мира - это представления о расположении в пространстве и движении Земли, Солнца, Луны, планет, звезд и других небесных тел. II. Картина мира. В древнеиндийской книге, которая называется “Ригведа”, что значит “Книга гимнов”,можно найти описание - одно из самых первых в истории человечества - всей Вселенной как единого целого.
В то время это был вежливый отказ. А как же с красной точкой возле Юпитера? В 1962 году я отправил разработки теории фантовой физики под общим названием "ФАНТАФИЗ" в Госкомизобретений СССР для регистрации как открытия. В ней я доказывал, что красная точка около Юпитера - это спутник Ио, что он имел уже три цикла вулканической деятельности и возможен новый цикл. Естественно, в признании открытия мне отказали... В 1979 году космозонд "Вояджер-1", пролетая мимо системы Юпитера, передал фото вулканизирующего Ио. Для астрономов это был удар грома средь ясного неба. В июле 1979 года "Вояджер-2" вновь показал ученым все еще вулканизиоующий Ио. Итак, "Вояджеры-1, 2" в течение четырех месяцев дважды подтвердили наличие на Ио вулканической деятельности, которую я наблюдал почти 60 лет, с 1934 года. Чтобы читателям было ясно, о каком споре идет разговор между официальной наукой и фантовой физикой, скажу следующее: спутник Ио был открыт Галилеем в 1610 году, затем определили его размеры и среднюю плотность, в 1957 году отметили его высокое альбедо, а в 1977-м астроном Н
Он определил положение 75000 тысяч звезд и создал обширные звездные каталоги, которые стали основой современных знаний о звездном небе. Бессель был одним из первых астрономов, измеривших параллаксы, а тем самым и расстояния до звезд. Вслед за В.Я.Струве, который в 1837 г. впервые определил расстояние до звезды Вега в созвездии Лиры, Бессель в 1838 г. измерил расстояние до звезды 61 Лебедя. Эта звезда оказалась одной из ближайших к Солнечной системе. Наблюдая в течение ряда лет яркие звезды Сириус и Процион, Бессель обнаружил в их движении такие особенности, которые можно было объяснить только тем, что эти звезды имеют спутников. Но эти спутники настолько слабы по светимости, что их нельзя было увидеть в телескопы. Предположение Бесселя впоследствии подтвердились: в 1862 г. обнаружен спутник звезды Сириус, а в 1896 г. - спутник Проциона. БИРУНИ (973-1048) Абу Рейхан Мухаммед ибн Ахмед фль-Бируни - среднеазиатский ученый-энциклопедист. Родился в предместье города Кят, столицы древнего государства Хорезма (ныне часть Узбекистана). Живя в условиях господства мусульманской религии, враждебно относившейся к науке, он смело выступил против религиозного миропонимания.
Советские астрономы-фотометристы Н. П. Барабашов и В. В. Шаронов в 1950 году дали объяснение эффекта Райта. Дело было всё-таки в фотографической иррадиации, но в сочетании с законом падения яркости к краю диска Марса. В красных лучах яркость падает к краям диска довольно сильно, поскольку мы наблюдаем здесь шарообразную поверхность планеты. Наоборот, в фиолетовых лучах, диск Марса кажется освещённым более равномерно, и его края довольно ярки. Поэтому в фиолетовых лучах иррадиация будет сильнее, чем в красных, что и вызовет эффект Райта. Объяснение эффекта Райта Н. П. Барабашовым и В. В. Шароновым было совершенно правильным, за одним исключением. Распределение яркости по диску Марса в фиолетовых лучах они приписывали целиком рассеянию света в атмосфере Марса. В действительности же главную роль здесь играли фотометрические свойства поверхности планеты. В 1972 г. проблемой фиолетового слоя занялся американский астроном Д. Томпсон. Изучив всю имевшуюся литературу по этой проблеме и использовав фотографическую коллекцию Международного планетного патруля, Томпсон пришёл к простому и неожиданному выводу.
Со временем из них на расстоянии около 10 земных радиусов (60000 км) сформировалась Луна. Одновременно началось её медленное удаление то Земли, которое продолжается и теперь. Оно сопровождается уменьшением скорости вращения Земли вокруг её оси. И всё же уже сейчас можно вполне уверенно говорить о том, что планеты и Солнце образовались из одного газопылевого облака и что сами планеты сформировались из роя холодных и твердых тел. Нет на Земле человека, который, вглядываясь в звёздное небо, не чувствовал бы всей его красоты и величия, который не испытывал бы желания познать его тайны. Успехи астрономии и космонавтики «приблизили» нас к звёздам. Сегодня каждый взгляд человека в небо наполняется конкретным содержанием: где-то там через причудливую мозаику из ярких звёзд прокладывает свой путь очередной пилотируемый космический корабль, в другом созвездии расположен интереснейший пульсар, в третьем - не менее знаменитая галактика или квазар. Сейчас на звёздном небе выделено около 100 созвездий. Они имеют точно указанные на карте неба границы. 235 звёзд, кроме буквенных обозначений, имеют собственные названия, которые в подавляющем большинстве случаев перешли от арабских астрономов.
Под влиянием собственной гравитации холодный слой, после того как он достигнет толщины около одного парсека, начнет "фрагментировать" на отдельные, еще более плотные сгустки, которые под воздействием собственной гравитации будут продолжать сжиматься. Таким вполне естественным образом в межзвездной среде возникают ассоциации протозвезд. Каждая такая протозвезда эволюционирует со скоростью, зависящей от ее массы. Когда существенная часть массы газа превратиться в звезды, межзвездное магнитное поле, которое своим давлением поддерживало газово-пылевой комплекс, естественно, не будет оказывать воздействия на звезды и молодые протозвезды. Под влиянием гравитационного притяжения Галактики они начнут падать к галактической плоскости. Таким образом, молодые звездные ассоциации всегда должны приближаться к галактической плоскости. Список литературы 1. И. С. Шкловский. Звезды: их рождение, жизнь и смерть 2. П. И. Бакулин. Курс общей астрономии 3. Ю. Н. Ефремов. В глубины Вселенной
Такое красное смешение велико даже для большинства галактик. Объект 3С 273 оказался не экзотической звездой из Млечного Пути, а чем-то совсем иным, мчащимся от нас со скоростью в 16% скорости света. Расстояние до этого квазара составляет около 3 млрд. световых лет, а видимый блеск равен 12,6m. Размер 3С 273 не превышает одного светового года. Оказалось, что и другие звездоподобные радиоисточники, такие как 3С 48, имеют большие красные смещения. Вот эти-то компактные объекты с большим красным смещением, которые на фотографиях напоминают звезды, и есть квазары. Слово “квазар” было придумано как сокращение от “квази-звездный радиоисточник”. “Квази-звездный” означает “похожий на звезду, но не звезда”. Сейчас астрономы считают, что квазары – это самая яркая из разновидностей активных галактических ядер. Хотя первые из них были найдены радиоастрономами, только одна десятая часть из известных ныне квазаров излучает радиоволны. На фотографиях они выглядят как звезды (это означает, что они малы по сравнению с галактиками), но все они имеют большое красное смещение.
Кто же изобрел телескоп Более ста лет назад, раскапывая холм Гиссарлык, под которым оказались руины древней Трои, Г. Шлиман наряду с другими находками, к немалому своему удивлению, обнаружил. великолепно выделанные линзы из хрусталя. Кто же их изготовил ? И главное, зачем ? Давно уже многих исследователей волнует вопрос: какими научными знаниями обладали древние? При чтении литературы по истории науки нередко создается впечатление, что представления античных учених по оптике и, соответственно, астрономии были, мягко выражаясь весьма примитивными. Но вряд ли это соответствует действительности. В.А. Гуриков в статье «История создания телескопа» пишет, что первая зрительная труба появилась в Нидерландах в начале XVII века, «несмотря на то, что линзы были известны ещу 2500 лет до н.э. ». Стеклянные линзы с разным увеличением, датируемые 600-400 г.г. до н.э. , найдены и в Месопотамии. Зажигательное действие линз и зеркал известно с глубокой древности; очки вошли в употребление в конце XIII века. А зрительная труба - лишь в XVIII веке ! В.
Они умели вычислять время прихода летнего и зимнего солнцестояний. В Центральной Америке 1000 лет назад астрономы майя могли предсказывать затмения, выстраивая длинный ряд наблюдений и отыскивая повторяющиеся сочетания факторов. Почти одинаковые затмения повторяются каждые 54 года 34 дня. 4.4. Как часто мы можем видеть затмения. Хотя Луна проходит по своей орбите вокруг Земли раз в месяц, затмения не могут происходить ежемесячно из-за того, что плоскость орбиты Луны наклонена относительно плоскости орбиты Земли вокруг Солнца. Самое большее, за год может произойти семь затмений, из которых два или три должны быть лунными. Солнечные затмения происходят только в новолуние, когда Луна находится в точности между Землей и Солнцем. Лунные же затмения всегда бывают в полнолуние, когда Земля находится между Землей и Солнцем. За всю жизнь мы можем надеяться увидеть 40 лунных затмений (при условии, что небо будет ясным). Наблюдать солнечные затмения более трудно из-за узости полосы затмений Солнца. Венцы. Часто, взглянув на Луну, просвечивающую через перистые облака или прозрачную дымку, можно увидеть, что ее диск окружен небольшими радужными кольцами.
Мифы Астрономии История названия созвездий История созвездий очень интересна. Ещё очень давно наблюдатели неба объединили наиболее яркие и заметные группы звёзд в созвездия и дали им различные наименования. Это были имена различных мифических героев или животных , персонажей легенд и сказаний - Геркулес, Центавр, Телец, Цефей, Кассиопея, Андромеда, Пегас и др. В названиях созвездий Павлин, Тукан, Индеец, Юж. Крест, Райская Птица была отражена эпоха Великих географических открытий. Созвездий очень много 88. Но не все из них яркие и заметные. Наиболее богато яркими звёздами зимнее небо. На первый взгляд, названия многих созвездий кажутся странными. Часто в расположении звёзд очень трудно или даже просто невозможно рассмотреть то, о чём говорит название созвездия. Большая Медведица, например, напоминает ковш, очень трудно представить на небе Жирафа или Рысь. Но если вы посмотрите старинные атласы звёздного неба, то на них созвездия изображены в виде животных. Что древние греки рассказывали о Медведицах? О Большой и Малой Медведицах существует много легенд. Вот одна из них. Когда-то в незапамятные времена, у царя Ликаон, правившего страной Аркадией, была дочь по имени Каллисто.
Сочинский Государственный Университет Туризма и Курортного ДелаРеферат: На тему: Модель большого взрыва и расширяющейся ВселеннойВыполнил Голиков А.С. Студент 2 курса Группы 20 ГМУ СОЧИ 2002 г.введение. Одной из основных концепций современного естествознания является учение о Вселенной как едином целом и обо всей охваченной астрономическими наблюдениями области Вселенной (Метагалактике) как части целого - космология. Выводы космологии основываются и на законах физики, и на данных наблюдательной астрономии. Как любая наука, космология в своей структуре кроме эмпирического и теоретического уровней имеет также уровень философских предпосылок, философских оснований. Так, в основании современной космологии лежит предположение о том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счете - на всю Вселенную. Это предположение об устойчивости законов природы в пространстве и времени относится к уровню философских оснований современной космологии. Цель моего реферата состоит в том, чтоб разобраться, что же все-таки представляет с себя вселенная.
В 1610 году Галилей впервые наблюдал смену фаз у Венеры, т.е. изменение ее видимой формы от диска до узкого серпа. В 1761 году Ломоносов, наблюдая прохождение планеты по диску Солнца, обнаружил у Венеры атмосферу. Начиная с XVII века астрономы не раз пытались "разглядеть" Венеру, однако из-за плотного облачного покрова Венера в видимом диапазоне длин волн представляется однородной. Совершенствование техники астрономических наблюдений, использование поляриметрических и стереоскопических измерений, освоение инфракрасного и ультрафиолетового диапазонов длин волн позволили получить некоторую информацию о характеристиках атмосферы Венеры на уровне верхней границы облаков. В двадцатых - тридцатых годах нашего столетия были проведены первые наблюдения Венеры в инфракрасной области 8-13 микрон, позволившие определить температуру атмосферы у верхней границы облаков (Петтит и Никольсон, 1929 год), обнаружены полосы углекислого газа (Адамс и Данхэм, 1932 год), проведены первые поляриметрические измерения (Лио, 1929 год).
В 1610 году Галилей впервые наблюдал смену фаз у Венеры, т.е. изменение ее видимой формы от диска до узкого серпа. В 1761 году Ломоносов, наблюдая прохождение планеты по диску Солнца, обнаружил у Венеры атмосферу. Начиная с XVII века астрономы не раз пытались "разглядеть" Венеру, однако из-за плотного облачного покрова Венера в видимом диапазоне длин волн представляется однородной. Совершенствование техники астрономических наблюдений, использование поляриметрических и стереоскопических измере- ний, освоение инфракрасного и ультрафиолетового диапазонов длин волн позволили получить некоторую информацию о характеристиках атмосферы Венеры на уровне верхней границы облаков. В двадцатых - тридцатых годах нашего столетия были проведены первые наблюдения Венеры в инфракрасной области 8-13 микрон, позволившие определить температуру атмосферы у верхней границы облаков (Петтит и Никольсон, 1929 год), обнаружены полосы углекислого газа (Адамс и Данхэм, 1932 год), проведены первые поляриметрические измерения (Лио, 1929 год).
Как показывает изучение условий, при которых возможно зарождение и дальнейшее развитие живой материи, только на планетах мы можем искать признаки существования органической жизни. Вот почему изучение планет, помимо общего интереса, имеет большое значение с точки зрения космической биологии. Изучение планет имеет большое значение, кроме астрономии, и для других областей науки, в первую очередь наук о Земле-геологии и геофизики, а также для космогонии-науки о происхождении и развитии небесных тел, в том числе и нашей Земли. Современные представления о планетах сложились не сразу. Для этого понадобилось много веков накопления и развития знаний и упорной борьбы новых, прогрессивных знаний с взглядами старыми, отживающими. В древних представлениях о Вселенной Земля считалась плоской, а планеты рассматривались лишь как светящиеся точки на небесном своде, отличавшиеся от звёзд только тем, что они перемещались между ними, переходя из созвездия в созвездие. За это планеты и получили название, означающее «блуждающие». Наблюдателям древности было известно пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн.
По почину Галилея многие из астрономов сами занимались изготовлением линз. В одном лице тогда должны были сочетаться таланты оптика, механика и астронома. Из оптиков того времени следует вспомнить, прежде всего, Пьера Гинана, швейцарского рабочего, начавшего в XVIII веке свою карьеру оптика с изготовления очков и примитивных рефракторов с картонными тубусами. Однажды ему удалось увидеть английский «доллонд», и Гинан решил сам научиться изготовлять такие рефракторы. В течение семи лет он пробовал самостоятельно отливать оптические стекла, однако поначалу успеха не имел. Но Гинан был человеком очень настойчивым, и неудачи только подстрекали его к новым опытам. Он построил новую большую плавильную печь, в которой можно было плавить до 80 кг стекла. На это ушли почти все его средства, и много лет его семье пришлось жить впроголодь. В конце концов, упорство было вознаграждено. В 1799 году Гинану удалось отлить несколько отличных дисков поперечником от 10 до 15 см – успех по тем временам неслыханный. В 1814 г. Гинан изобрел остроумный способ для уничтожения струйчатого строения в стеклянных болванках: отлитые заготовки распиливались и, после удаления брака, снова спаивались.
![]() | 978 63 62 |