телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы

РАСПРОДАЖАТовары для детей -30% Канцтовары -30% Образование, учебная литература -30%

все разделыраздел:Радиоэлектроника

Широкополосный усилитель

найти похожие
найти еще

Чашка "Неваляшка".
Ваши дети во время приёма пищи вечно проливают что-то на ковёр и пол, пачкают руки, а Вы потом тратите уйму времени на выведение пятен с
222 руб
Раздел: Тарелки
Фонарь садовый «Тюльпан».
Дачные фонари на солнечных батареях были сделаны с использованием технологии аккумулирования солнечной энергии. Уличные светильники для
106 руб
Раздел: Уличное освещение
Брелок LED "Лампочка" классическая.
Брелок работает в двух автоматических режимах и горит в разных цветовых гаммах. Материал: металл, акрил. Для работы нужны 3 батарейки
131 руб
Раздел: Металлические брелоки
Проводимость перехода база-эмиттер рассчитывается по формуле (4.19) где - сопротивление эмиттерного перехода; - статический коэффициент передачи тока в схеме с ОЭ ( ). Ёмкость эмиттера рассчитывается по формуле (4.20) где fт – граничная частота коэффициента усиления тока базы ( ). Крутизна внутреннего источника рассчитывается по формуле (4.21) где - статический коэффициент передачи тока в схеме с ОБ. (4.22) Проводимости gБК и gi оказываются много меньше проводимости нагрузки усилительных каскадов, в расчётах они обычно не учитываются. Подставляя численные значения, по формулам (4.16) ? (4.22) проводим расчёт элементов схемы. По формулам (4.17а) и (4.17б) пересчитаем ёмкость коллектора для напряжения, при котором измерена постоянная времени цепи обратной связи, а также для напряжения, равного напряжению в рабочей точке: По формуле (4.16) производим расчет проводимости базы: По формуле (4.18) производим расчет сопротивления эмиттерного перехода: Проводимость база-эмиттер вычисляем согласно формуле (4.19): По формуле (4.20) рассчитываем ёмкость эмиттера: Крутизну внутреннего источника вычисляем по формулам (4.21) и (4.22): 4.3.2 Расчет высокочастотной однонаправленной модели Однонаправленная модель справедлива в области частот более , где = ( - граничная частота коэффициента передачи тока, - статический коэффициент передачи тока в схеме с общим эмиттером) . Однонаправленная модель транзистора представлена на рисунке 4.6. Рисунок 4.6 – Однонаправленная модель транзистора Элементы схемы замещения, приведенной на рисунке 4.6, могут быть рассчитаны по следующим эмпирическим формулам . Входное сопротивление: (4.24) где - сопротивление базы в схеме Джиаколетто (см. рисунок.4.5). Выходное сопротивление: (4.25) где UКЭМАХ – предельное значение напряжения коллектор-эмиттер ( ); IКМАХ – предельное значение постоянного тока коллектора ( ). Подставляя в выражение (4.25) числовые значения, получаем: Выходная ёмкость: (4.26) где СК – ёмкость коллектора, рассчитанная в соответствии с формулой (4.17,б) 4.4 Расчет цепей термостабилизации Существует несколько видов схем термостабилизации . Использование этих схем зависит от мощности каскада и требований к термостабильности. В данной работе рассмотрены следующие три схемы термостабилизации: эмиттерная, пассивная коллекторная, активная коллекторная. Необходимо сравнить эффективность использования данных схем. 4.4.1 Эмиттерная термостабилизация Рассмотрим эмиттерную термостабилизацию, схема которой приведена на рисунке 4.7. Метод расчёта и анализа эмиттерной термостабилизации подробно описан в . Рисунок 4.7 – Схема эмиттерной термостабилизации Расчет номиналов элементов осуществляется по известной методике, исходя из заданной рабочей точки. Рабочая точка достаточно жестко стабилизирована, если (4.27) Номинал резистора RЭ находится по закону Ома: (4.28) Емкость СЭ позволяет всему сигналу от генератора выделяться на транзисторе. Номинал рассчитывается по формуле: .(4.29) Напряжение источника питания будет составлять сумму падений напряжений на транзисторе и резисторе в цепи эмиттера: (4.30) Базовый ток в раз меньше тока коллектора: (4.31) Выбор тока делителя осуществляется следующим образом: (4.32) Расчет номиналов резисторов базового делителя производим по формулам: (4.33) (4.34) Принимая и , согласно выражениям (4.27) – (4.34) производим численный расчет: Также проведем расчет мощности, рассеиваемой на резисторе RЭ. 4.4.2 Пассивная коллекторная термостабилизация Этот вид термостабилизации применяется в маломощных каскадах и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу.

Рассмотрим две схемы реализации выходного каскада: резистивную и дроссельную. Выбор той или иной схемы осуществим на основе полученных данных расчета. Критерий выбора – оптимальные энергетические характеристики схемы. 4.1.1 Расчет рабочей точки для резистивного каскада Принципиальная схема резистивного каскада и эквивалентная схема по переменному току представлены на рисунках 4.1,а и 4.1,б соответственно. Рисунок 4.1,а - Принципиальная схема резистивного каскадаРисунок 4.1,б- Эквивалентная схема по переменному току Сопротивлением по переменному току для резистивного каскада будет являться параллельное соединение сопротивлений Rk и Rн (рисунок 4.1,б): (4.1) Принимая сопротивление коллекторной цепи транзистора Rk равным сопротивлению нагрузки Rн (Rн = 50 Ом), согласно формуле (4.1), получаем: По известному сопротивлению нагрузки по переменному току и выходному напряжению можно найти выходной ток: (4.2) В результате ток равен: Зная выходное напряжение и ток, определим координаты рабочей точки согласно следующим формулам: ,(4.3) где Iко – ток в рабочей точке; Iвых – выходной ток; Iост - остаточный ток, принимается равным 0.1 Iвых. ,(4.4) где Uкэо – напряжение в рабочей точке; Uвых – выходное напряжение; Uнас - начальное напряжение нелинейного участка выходных характеристик транзистора, выбирается от 1В до 2В. Полагая Uнас=1.5В, по формулам (4.3) и (4.4) находим: Напряжение источника питания для схемы, представленной на рисунке 4.1,а, будет составлять сумму падений напряжений на сопротивлении Rк и транзисторе: .(4.5) Перепишем выражение (4.5) в следующем виде: .(4.6) Выражение (4.6) есть ни что иное как уравнение прямой (в данном случае ток Iкo является функцией аргумента Uкэо), которая называется нагрузочной прямой по постоянному току. В пределах этой прямой и будет изменяться рабочая точка. Для проведения прямой выберем две точки с координатами (Еп,0) и (0,Iкmax): В сигнальном режиме строится нагрузочная прямая по переменному току. Для построения данной прямой зададимся некоторым приращением тока и соответствующим приращением напряжения, учитывая, что в данном случае сопротивление нагрузки будет определяться выражением (4.1): .(4.7) Для упрощения расчетов примем . Тогда после подстановки в выражение (4.7) числовых значений получаем: Нагрузочные прямые по постоянному и переменному токам представлены на рисунке 4.2. Рисунок 4.2 – Нагрузочные прямые для резистивного каскада Мощности, рассеиваемая на транзисторе, потребляемая каскадом и выходная, определяются согласно следующим выражениям: ,(4.8) ,(4.9) .(4.10) По формулам (4.8), (4.9) и (4.10) вычисляем соответствующие мощности: Коэффициент полезного действия (КПД) рассчитывается по формуле (4.11) Подставляя в (4.11) числовые значения, получаем: 4.1.2 Расчет рабочей точки для дроссельного каскада В отличие от предыдущего каскада дроссельный имеет в цепи коллектора вместо сопротивления Rк дроссель Lдр. Принципиальная схема дроссельного каскада и эквивалентная схема по переменному току представлены на рисунках 4.3,а и 4.3,б соответственно. Рисунок 4.3,а- Принципиальная схема дроссельного каскадаРисунок 4.3,б- Эквивалентная схема по переменному току Поскольку для сигнала дроссель является холостым ходом, то в данном случае сопротивление нагрузки по переменному току будет равно сопротивлению нагрузки: Расчет рабочей точки производится по тем же выражениям, что и для предыдущего каскада. По формуле (4.2) рассчитаем выходной ток: Тогда согласно выражениям (4.3) и (4.4) рабочая точка будет иметь следующие координаты: Так как дроссель по постоянному току является короткозамкнутым проводником, то напряжение питания будет равным падению напряжения на транзисторе: Таким образом получаем все необходимые данные для построения нагрузочной прямой по постоянному току.

Рассчитаем , , , , каскада с эмиттерной коррекцией, схема которого приведена на рисунке 4.13, для нашего транзистора КТ911А (данные транзистора приведены в выше) и условий: =0.5 дБ; = 9; RH= 50 Ом. По известным , и из (4.67), (4.68) получим: . Подставляя в (4.69) и (4.73) найдем Ом; . Рассчитывая по (4.72) и подставляя в (4.70), (4.71) получим: с; Ф. По известным , , , и из (4.74) определим: =539.4?106Гц=539.4МГц. По формулам (4.75), (4.76) найдем =52.5?10-12 Ф=52.5 пФ; Ом-1. 5 Расчет входного каскада 5.1 Расчет рабочей точки На высоких частотах дроссель в цепи коллектора начинает пропускать какую-то часть высокочастотного сигнала, поскольку возрастает роль паразитных параметров (межвитковых ёмкостей). В результате на внутреннем сопротивлении источника питания могут возникнуть высокочастотные пульсации. Если эти пульсации попадут на вход усилителя, то устройство может самовозбудиться. Для устранения паразитной обратной связи через источник питания вводят RC – фильтр . Принципиальная схема входного каскада представлена на рисунке 6.1. Рисунок 5.1 – Принципиальная схема входного каскада Выберем падение напряжения на резисторе RФ равное 2.5В. Тогда напряжение в рабочей точке транзистора V 1 уменьшится на данную величину и будет равно Ток в рабочей точке транзистора входного каскада рассчитаем по формуле (5.1): 5.2 Выбор транзистора входного каскада Для расчета предоконечного каскада возьмем тот же транзистор КТ911А, что был выбран в пункте 4.2, так как он полностью удовлетворяет всем требованиям. Его основные параметры приведены там же. 5.3 Расчет эквивалентных схем транзистора Поскольку ток в рабочей точке транзистора оконечного каскада имеет другое значение по сравнению с током в рабочей точке выходного каскада, то значения элементов схемы Джиаколетто тоже изменятся. По формулам (4.18) – (4.22) рассчитаем данные значения: Расчет эквивалентных схем транзистора входного каскада производится по тем же формулам, которые представлены в пунктах 4.3.1 и 4.3.2. Схема Джиаколетто и эквивалентная схема замещения однонаправленной высокочастотной модели представлены на рисунках 4.5 и 4.6 соответственно. - сопротивление базового перехода: , - емкость коллекторного перехода в рабочей точке: - проводимость база-эмиттер: , - ёмкость эмиттерного перехода: , - выходное сопротивление транзистора: . Тогда , - входное сопротивление: , - выходная ёмкость: , - крутизна: . 5.4 Расчет схемы термостабилизации Как было сказано в пункте 4.4.3, для данного усилителя предпочтительней выбрать во всех каскадах эмиттерную термостабилизацию. Её схема представлена на рисунке 4.7. Расчёт производится аналогично расчёту выходного каскада. Отличием является лишь то, что коллекторный ток будет иметь другое значение. Принимая и , согласно выражениям (4.27) – (4.34) производим численный расчет: напряжение питания: базовый ток транзистора: , ток делителя: , резисторы базовых делителей и резистора в цепи эмиттера: , , , Емкость конденсатора в цепи эмиттера: Также проведем расчет мощности, рассеиваемой на резисторе RЭ. 5.5 Расчет не корректированного каскада В соответствии с коэффициент усиления каскада в области верхних частот описывается выражением: , где;(5.1) ;(5.2) ;(5.3) ;(5.4) fB=(5.5) – входное сопротивление и входная емкость нагружающего каскада.

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Большая Советская Энциклопедия (РЕ)

Такие ОУ обеспечивают ky = 108—109, Iп = 10-12—10-10 а, En = 1—50 мкв, fcp = 1—100 Мгц. ОУ с одним каналом усиления имеют ky = 10-11—10-6, Iп = 10-11—10-6, fcp = 1—20 Мгц.   Лит.: Полонников Д. Е., Решающие усилители, М., 1973; Проектирование и применение операционных усилителей, пер. с англ., М., 1974.   Д. Е. Полонников. Рис. 1. Структурная схема решающего усилителя: Uвх1,..., Uвхn — напряжения (сигналы) на входах решающего усилителя; Z1, ..., Zn — входные сопротивления; S — суммирующая точка; Zoc — сопротивление цепи обратной связи; Uвых — выходное напряжение (сигнал); ОУ — операционный усилитель. Рис. 2. Структурная схема операционного усилителя: Bx — вход операционного усилителя; С — разделительные конденсаторы; У1 — усилитель низкой частоты и постоянного тока; У2 — высокочастотный усилитель с ky ~ 1; Уз — усилитель средней частоты; У4 — выходной широкополосный усилитель; Вых — выход операционного усилителя. Решевский Сэмюэл Реше'вский (Reshevsky) Сэмюэл (р. 26.11.1911, Озоркув, Лодзинское воеводство, Польша), американский шахматист, международный гроссмейстер (1950)

скачать реферат Реконструкция волоконно-оптической линии связи

Если в качестве физического канала выступает оптическое излучение — оптическая несущая, то она модулируется по интенсивности групповым информационным сигналом, спектр которого состоит из ряда частот поднесущих, количество которых равно числу компонентных информационных потоков. Частота поднесущей каждого канала выбирается исходя из условия fпн ? 10fвчп, где fпн — частота поднесущей, fвчп — верхняя частота спектра информационного потока. Частотный интервал между поднесущими ?fпн выбирается из условия ?fпн ? fвчп. На приемной стороне оптическая несущая попадает на фотодетектор, на нагрузке которого выделяется электрический групповой поток, поступающий после усиления в широкополосном усилителе приема на входы узкополосных фильтров, центральная частота пропускания которых равна одной из поднесущих частот . В качестве компонентных потоков могут выступать как цифровые, так и аналоговые сигналы, В настоящее время в кабельных системах передачи частотное уплотнение применяется в многоканальном кабельном телевидении, где для этой цели отведен диапазон частот 47 - 860 МГц, т.е. как метровый, так и дециметровый диапазоны ТВ. 1.2.3. Уплотнение по поляризации (PDM) Уплотнение потоков информации с помощью оптических несущих, имеющих линейную поляризацию, называется уплотнением по поляризации (PDM — Polariza io Divisio Mul iplexi g).

Светильник "Лампочка на веревке", синий.
Оригинальный пластиковый светодиодный светильник на шнурке длиной 116 - 125 см. Достаточно дёрнуть за лампочку, чтобы включить либо
343 руб
Раздел: Необычные светильники
Трехколесный велосипед Funny Jaguar Lexus Racer Trike (цвет: серебро).
Детский трехколесный велосипед с колясочной крышей на колесах ПВХ – настоящее спасение для мам с маленькими детьми. Главное место для
3600 руб
Раздел: Трехколесные
Карандаши цветные "Nuance", 24 цвета.
Карандаши цветные. Пластиковый трехгранный корпус. Диаметр грифеля: 3 мм. В наборе: 24 цвета.
404 руб
Раздел: 13-24 цвета
 Большая Советская Энциклопедия (ВИ)

Видеоусилитель Видеоусили'тель, широкополосный ламповый или полупроводниковый усилитель, применяемый в телевизионных, радиолокационных, осциллографических и др. устройствах для усиления видеосигналов перед подачей их на электроннолучевую трубку. Для сохранения формы видеосигналов В. должен равномерно (отклонение не более 1—3 дб ) их усиливать в широкой полосе пропускания частот (от 10—30 гц до 4—6 Мгц ) без заметных фазовых искажений. См. Фазочастотная характеристика . Наиболее применимы схемы одно- и двухкаскадного В., в цепь нагрузки усилительной ступени которых включается резистор с малым сопротивлением и различные сочетания катушек индуктивности, конденсаторов, резисторов. Эти сочетания выбираются таким образом, чтобы вызвать подъём усиления в области высоких и низких частот, приводящий к равномерному усилению и уменьшению фазовых искажений в более широкой полосе частот. На рис . приведены схема однокаскадного лампового В. и его амплитудно-частотная характеристика. Подъём (коррекция) усиления в области высоких частот достигается вследствие резонансных явлений в колебательных контурах, образуемых катушками индуктивности L a , L c и паразитными ёмкостями схемы Спар , в области низких частот — подбором параметров цепи анодной развязки R ф С ф . См. также Электрических сигналов усилитель .   Лит.: Крейцер В. Л., Видеоусилители, М., 1952; Лурье О., Усилители видеочастоты, 2 изд., М., 1961.   А. Я. Клопов

скачать реферат Отчет по УИР. Телевизионные усилители

Это связано с тем, что уменьшение усиления приводит: к снижению коэффициента полезного действия усилителя, из-за возрастания числа усилительных каскадов и увеличения потребляемой ими мощности от источника питания; к ухудшению линейности амплитудной характеристики и возрастанию интермодуляционных искажений, вследствие работы предоконечных каскадов усилителей на частотно-зависимое сопротивление нагрузки при повышенных выходных напряжениях. В описана методика параметрического синтеза таблиц нормированных значений элементов КЦ используемых в усилителях мощности, позволяющая осуществлять их реализацию с максимально возможным коэффициентом усиления при заданном допустимом уклонении АЧХ от требуемой формы. Используя однонаправленную модель транзистора, передаточную функцию каскада с КЦ можно описать дробно-рациональной функцией комплексного переменного: - текущая круговая частота; - высшая круговая частота полосы пропускания широкополосного усилителя, либо центральная частота полосового усилителя; К - множитель определяющий уровень коэффициента передачи; - коэффициенты, являющиеся функциями параметров КЦ нормированных относительно для широкополосных и для полосовых усилителей.

 Большая Советская Энциклопедия (ОС)

Преобразованный сигнал, представляющий собой огибающую мгновенных значений входного сигнала, повторяет его форму. Длительность преобразованного сигнала во много раз превышает длительность исследуемого, и, следовательно, имеет место сжатие спектра, что эквивалентно соответствующему расширению полосы пропускания О. Стробоскопический О. наиболее широкополосны и позволяют исследовать периодические сигналы длительностью ~ 10—11 сек.   Скоростные О. имеют трубки с вертикально отклоняющей системой типа «бегущей волны». Они характеризуются широкополосностью (1—5×109 Мгц) и большой скоростью записи. Скоростные О. не имеют усилителя в тракте вертикального отклонения и, в отличие от стробоскопических, позволяют исследовать не только периодические, но и однократные быстропротекающие сигналы. Специальные О. служат для исследования телевизионных или высоковольтных сигналов и т.п.   Лит.: Вишенчук И. М., Соголовский Е. П., Швецкий Б. И., Электроннолучевой осциллограф и его применение в измерительной технике, М., 1957; Новопольский В. А., Электроннолучевой осциллограф, М., 1969; Чех И., Осциллографы в измерительной технике, пер. с нем. М., 1965; Выражение свойств электроннолучевых осциллографов

скачать реферат Усилитель модулятора лазерного излучения

В результате чего появляется основная проблема при проектировании данного усилителя заключаюещаяся в том, чтобы  обеспечить требуемый кофициент усиления в заданной полосе частот .    Наибольшей широкополосностью, при работе на ёмкостную нагрузку, обладает усилительный каскад с параллельной отрицательной обратной связью по напряжению. Он и был выбран в качестве выходного каскада разработанного широкополосного усилителя мощности. Так же по сравнению с обыкновенным резистивным каскадом выбранный вариант более экономичный. Для компенсации завала АЧХ в области верхних частот при применении резистивного каскада пришлось бы ставить в цепи коллектора очень малое сопротивление порядка 6 , для уменьшения общего выходного сопротивления каскада, что естественно привело бы к увеличению тока в цепи коллектора и рассеваемой мощности, а соответственно и к выбору более дорогого по всем параметрам транзистора. Для выходного, каскада была использована активная коллекторная термостабилизация. Обладающая наименьшей, из всех известных мне схем термостабилизаций, мощностью потребления и обеспечивающая наибольшую температурную стабильность коллекторного тока.

скачать реферат Аналого-цифровой преобразователь (АЦП)

Входные аналоговые сигналы подаются на входы аналогового мультиплексора A S, управляемого микроконтроллером МС. С выхода мультиплексора, через широкополосный усилитель сигнал подаётся на вход блока компараторов CPM, также усиленный сигнал подаётся на вход схемы автоматического переключения полярности опорного напряжения AuS. Со схемы источника опорного напряжения Uc опорное напряжение подаётся на блок резисторных делителей с аналоговыми ключами RLi и далее на другой вход блока компараторов. С выхода блока компараторов цифровой код, эквивалентный входному измеряемому сигналу, по команде микроконтроллера MC записывается в регистр RG, из которого считывается микроконтроллером для обработки и передачи внешним устройствам. 1.4 Техническое обоснование выбора компонентов схемы. В этом разделе рассматривается выбор компонентов для исполнения АЦП на дискретных элементах. Фирмы занимающиеся производством полупроводниковых компонентов предоставляют широкий выбор быстродействующих полупроводниковых элементов: аналоговые ключи, широкополосные операционные усилители, компараторы и т.д. К сожалению, отечественная промышленность не производит компоненты с необходимыми параметрами, поэтому в разработке использована продукция зарубежных производителей.

скачать реферат Усилитель мощности системы поиска нелинейностей

Система поиска нелинейностей состоит из блока формирования сложного сканирующего по частоте сигнала, широкополосного усилителя мощности (ШУМ), и широкополосной приемо-передающей антенны. ШУМ необходим для создания на разыскиваемой нелинейности такого уровня напряженности электромагнитного поля облучения, который позволил бы приемной аппаратурой осуществить прием продуктов нелинейного преобразования. Основными требованиями, предъявляемыми к ШУМ, являются: обеспечение заданной мощности излучения в широкой полосе частот; малый уровень нелинейных искажений; высокий коэффициент полезного действия; стабильность характеристик в диапазоне температур. Устройство, рассматриваемое в данной работе, может широко применяться на практике в различных системах поиска нелинейноатей. Техническое задание Усилитель должен отвечать следующим требованиям: Рабочая полоса частот: 10-250 МГц Линейные искажения в области нижних частот не более 1.5 дБ в области верхних частот не более 1.5 дБ Коэффициент усиления 15 дБ Выходная мощность 10 Вт Диапазон рабочих температур: от 10 до 50 градусов Цельсия Сопротивление источника сигнала и нагрузки Rг=Rн=50 Ом 1 Расчетная часть 1.1. Определение числа каскадов.

скачать реферат Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств

Здесь же представлена экспериментальная характеристика усилителя (кривая 2). 3.3. Параметрический синтез полосовых усилительных каскадов Полосовые усилители мощности находят широкое применение в системах пейджинговой и сотовой связи, телевизионном и радиовещании. На рис. 3.15–3.17 приведены схемы КЦ, наиболее часто применяемые при построении полосовых усилителей мощности метрового и дециметрового диапазона волн Рис. 3.15. Четырехполюсная реактивная КЦ третьего порядка Рис. 3.16. Четырехполюсная реактивная КЦ четвертого порядка Рис. 3.17. Четырехполюсная реактивная КЦ, выполненная в виде фильтра нижних частот Осуществим синтез таблиц нормированных значений элементов приведенных схемных решений КЦ полосовых усилителей мощности. 3.3.1. Параметрический синтез полосовых усилительных каскадов с корректирующей цепью третьего порядка Описание рассматриваемой схемы (рис. 3.15), ее применение в полосовых усилителях мощности и методика настройки даны в работах . В разделе 3.2.2 дано описание методики расчета анализируемой схемы при ее использовании в качестве КЦ широкополосного усилителя.

Мягкий пол универсальный, желтый, 30x30 см (9 деталей).
Данный вид напольного покрытия прекрасно совмещается с мягкими полами 60х60 см и ковриком-пазлом «Классики». 9 деталей - 1 кв.м. Пол идет
754 руб
Раздел: Прочие
Статуэтка "Римская богиня счастья и удачи - Фортуна", 20 см, арт. 127548.
Статуэтка "Римская богиня счастья и удачи - Фортуна" - это отличный вариант подарка. Красивый продуманный дизайн и высокое
696 руб
Раздел: Статуэтки интерьерные
Ранец жесткокаркасный для начальной школы "Динозавр", 18 литров, 36x26x14 см.
Ранец жесткокаркасный для начальной школы, вместительное основное отделение и дополнительные карманы, светоотражающие полосы. Форма ранца:
1247 руб
Раздел: Без наполнения
скачать реферат Усилитель широкополосный

ОУ предназначен для выполнения различных операций над аналоговыми величинами, при работе в схеме с глубокими отрицательными обратными связями (ООС). При этом под аналоговой величиной подразумевается непрерывно изменяющееся напряжение или ток Основной целью данного курсового проекта является разработка широкополосного усилителя. В задачу входит анализ исходных данных на предмет оптимального выбора структурной схемы и типа электронных компонентов, входящих в состав устройства, расчёт цепей усилителя. По заданию усилитель должен усиливать сигнал в полосе частот от 4 до 40 МГц с частотными искажениями не более 2 дБ на верхних и 3дБ нижних частотах. Нелинейные искажения усилителя необходимо оценить. 2 Расчет структурной схемы усилителя 2.1 Определение числа каскадов Чтобы обеспечить амплитуду выходного сигнала, заданную в техническом задании, нужно выбрать многокаскадный усилитель, так как одного усилительного элемента недостаточно. Поэтому определим число каскадов для обеспечения выходного сигнала. Структурную схему многокаскадного усилителя можно представить как Рисунок 2.1 - Структурная схема усилителя K - коэффициент усиления, дБ; Ki - коэффициент усиления i-го каскада, дБ; i = 1,., ; - число каскадов.

скачать реферат Трех- и четырехволнове рассеяние света на поляритомах и кристаллах ниобата лития с примесями

На выходе спектрографа формировалась двумерная частотно-угловая картина рассеяния. Отклонение луча по горизонтали соответствовало частоте рассеянной волны, по вертикали - углу рассеяния в плоскости волновых векторов накачек. Устройство кассетной части спектрографа позволяет проводить как фотографическую, так и электронную регистрацию сигнала. В последнем случае приемником сигнала служит ФЭУ2, работающий в аналоговом режиме. Его сигнал через широкополосный усилитель с регулируемым коэффициентом передачи поступает в быстродействующий стробируемый АЦП интегрирующего типа, входящий в состав крейта КАМАК и далее в управляющую ЭВМ типа IBM PC/A . Управляющая ЭВМ посредством блоков, входящих в состав крейта КАМАК, осуществляет синхронизацию и управление работой отдельных узлов установки. В настоящем варианте установки, при фотоэлектронной регистрации спектра, ФЭУ был неподвижен, и перед ним была помещена щель переменной ширины с микрометрическим винтом. Сканирование спектра по частоте осуществлялось путем поворота призменной части спектрографа шаговым двигателем ШД1. Другой двигатель ШД2 служит для поворота кристалла в плоскости, содержащей все лучи накачек, что дает возможность изменять расстройку фазового синхронизма в образце.

скачать реферат Спектральный анализ сигналов электрооптического рассеяния света в аэродисперсной среде

Ориентирующее синусоидальное напряжение вырабатывается генератором синусоидальных колебаний звуковой частоты 8 с высоковольтным повышающим трансформатором на выходе. Появление в межэлектродном пространстве ячейки 3 ориентирующего поля приводит к возникновению периодических колебаний несферических частиц модулирующей среды, обладающих собственным или наведенным дипольным моментом, что немедленно сказывается на интенсивности рассеянного света, которая регистрируется фотоэлектронным умножителем ФЭУ-85. Сигнал от ФЭУ поступает на вход широкополосного усилителя У7-2. Предусмотрено измерение или компенсация постоянной составляющей выходного сигнала ФЭУ. Выход усилителя соединяется с измерительно-вычислительным комплексом (ИВК) для исследования спектральных характеристик. ИВК реализован на базе микро-ЭВМ IBM-PC с объемом ОЗУ 16 Mбайт. В состав комплекса входят аналого-цифровой преобразователь Ф-4223, генератор тактовых импульсов Г5-60, принтер и фильтр нижних частот (ФНЧ). С выхода усилителя 6 исследуемый сигнал с амплитудой, не превышающей 10 В, через фильтры нижних частот (ФНЧ) поступает на аналого-цифровой преобразователь (АЦП).

скачать реферат Расчет элементов высокочастотной коррекции усилительных каскадов на биполярных транзисторах

Расчет каскада с комбинированной ООС . .23 2. Расчет каскадов с перекрестными ООС 25 3. Расчет каскада со сложением напряжений 27 6. Расчет каскадов с четырехполюсными корректирующими цепями. .29 1. Расчет выходной корректирующей цепи . .30 2. Расчет каскада с реактивной межкаскадной корректирующей цепью третьего порядка 32 3. Расчет каскада с заданным наклоном АЧХ .35 7. Расчет усилителей с частотным разделением каналов 41 8. Список использованных источников 43 ВВЕДЕНИЕ Расчет элементов высокочастотной коррекции является неотъемлемой частью процесса проектирования усилительных устройств, как одного из классов аналоговых электронных устройств. В известной учебной и научной литературе материал, посвященный этой проблеме, не всегда представлен в удобном для проектирования виде. К тому же в теории усилителей нет достаточно обоснованных доказательств преимущества использования того либо иного схемного решения при разработке конкретного усилительного устройства. В этой связи проектирование широкополосных усилителей во многом основано на интуиции и опыте разработчика. При этом, разные разработчики, чаще всего, по-разному решают поставленные перед ними задачи, достигая требуемых результатов.

скачать реферат УСИЛИТЕЛЬ РАДИОРЕЛЕЙНОЙ ЛИНИИ СВЯЗИ

Министерство образования Российской Федерации ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ РАДИОЭЛЕКТРОНИКИ (ТУСУР) Кафедра радиоэлектроники и защиты информации (РЗИ) УСИЛИТЕЛЬ РАДИОРЕЛЕЙНОЙ ЛИНИИ СВЯЗИ Пояснительная записка к курсовому проекту по дисциплине Схемотехника АЭУ Студент гр. 148-3 Валтеев В.В. 4.05.2001г. Руководитель Доцент кафедры РЗИ Титов А.А. 2001 Реферат Курсовой проект 18 с., 11 рис., 1 табл. КОЭФФИЦИЕНТ УСИЛЕНИЯ (Кu), АМПЛИТУДНО-ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ (АЧХ), ТЕРМОСТАБИЛИЗАЦИЯ, РАЗДЕЛИТЕЛЬНЫЕ ЁМКОСТИ, ДРОССЕЛИ, ПЕРЕКРЁСТНЫЕ ОБРАТНЫЕ СВЯЗИ, ОТРИЦАТЕЛЬНЫЕ ОБРАТНЫЕ СВЯЗИ (ООС), ОБЩИЙ ЭМИТТЕР (ОЭ). Объектом проектирования является усилитель радиорелейных линий связи. Цель работы – научиться проектировать широкополосный усилитель по заданным требованиям к нему. В процессе работы производился аналитический расчёт усилителя и вариантов его исполнения, при этом был произведён анализ различных схем термостабилизации, рассчитаны эквивалентные модели транзистора, рассмотрены варианты коллекторной цепи транзистора.

Салатники "Хлеб", 2 штуки.
Салатники, 2 штуки. Диаметр: 13,5/16,5 см. Высота: 6/7 см. Объем: 350/650 мл. Материал: керамика.
362 руб
Раздел: Наборы
Вакуумные пакеты с вешалкой 3 штуки: 70х105 см (2 штуки), 70х145 см (1 штука).
Характеристики: - уменьшают объём мягких предметов в 3-4 раза; - надежно защищают вещи от моли, грязи и сырости; - очень износоустойчивы и
529 руб
Раздел: Вакуумные пакеты
Набор "My Little Pony", 3 предмета.
Набор посуды в подарочной упаковке. Кружка 250 мл. Салатник 13 см. Тарелка 19,5 см.
578 руб
Раздел: Наборы для кормления
скачать реферат Усилитель модулятора лазерного излучения

В результате чего появляется основная проблема при проектировании данного усилителя заключаюещаяся в том, чтобы обеспечить требуемый кофициент усиления в заданной полосе частот . Наибольшей широкополосностью, при работе на ёмкостную нагрузку, обладает усилительный каскад с параллельной отрицательной обратной связью по напряжению. Он и был выбран в качестве выходного каскада разработанного широкополосного усилителя мощности. Так же по сравнению с обыкновенным резистивным каскадом выбранный вариант более экономичный. Для компенсации завала АЧХ в области верхних частот при применении резистивного каскада пришлось бы ставить в цепи коллектора очень малое сопротивление порядка 6 , для уменьшения общего выходного сопротивления каскада, что естественно привело бы к увеличению тока в цепи коллектора и рассеваемой мощности, а соответственно и к выбору более дорогого по всем параметрам транзистора. Для выходного, каскада была использована активная коллекторная термостабилизация. Обладающая наименьшей, из всех известных мне схем термостабилизаций, мощностью потребления и обеспечивающая наибольшую температурную стабильность коллекторного тока.

скачать реферат Усилитель мощности системы поиска нелинейностей

В результате выполненной курсовой работы получена схема электрическая принципиальная широкополосного усилителя мощности АМ, ЧМ сигналов. Найдена топология элементов и их номиналы Основными требованиями, предъявляемыми к ШУМ, являются: обеспечение заданной мощности излучения в широкой полосе частот; малый уровень нелинейных искажений; высокий коэффициент полезного действия; стабильность характеристик в диапазоне температур. В соответствии с указанными требованиями был разработан ШУМ на транзисторах КТ934В и КТ934Б, в котором использована схема выходного каскада со сложением напряжений , применена активная коллекторная термостабилизация, и четырехполюсные межкаскадные корректирующие цепи . Технические характеристики ШУМ: полоса рабочих частот (10-250) МГц; номинальный уровень выходной мощности 10 Вт; коэффициент усиления 15 дБ; сопротивление генератора и нагрузки 50 Ом; напряжение питания 18 В. Устройство, рассматриваемое в данной работе, может широко применяться на практике в различных системах поиска нелинейноатей. Список использованных источников 1Титов А.А. Григорьев Расчет элементов высокочастотной коррекции усилительных каскадов на полевых транзисторах. – Томск, 2000. - 27 с. 2Титов А.А. Расчет диссипативной межкаскадной корректирующей цепи широкополосного усилителя мощности. //Радиотехника. 1989. № 2. 3Мамонкин И.Г. Усилительные устройства: Учебное пособие для вузов. – М.: Связь, 1977. 4 Титов А.А. Расчет корректирующих цепей широкополосных усилительных каскадов на биполярных транзисторах – 2764.zip 5 Титов А.А., Ильюшенко В.Н., Авдоченко Б.И., Обихвостов В.Д. Широкополосный усилитель мощности для работы на несогласованную нагрузку. /Приборы и техника эксперимента. 1996. № 2. 6 Бабак Л.И. Анализ широкополосного усилителя по схеме со сложением напряжений. - Сб. статей. Наносекундные и субнаносекундные усилители. /Под ред. И.А. Суслова. - Томск: Изд-во Том. ун-та. 1976. 7 Зайцев А.А.,Миркин А.И., Мокряков В.В. Полупроводниковые приборы.

скачать реферат Усилитель мощности широкополосного локатора

Этого добиваются включением выходной емкости транзистора (см. рисунок 4.10) в фильтр нижних частот, используемый в качестве выходной корректирующей цепи (ВКЦ). Схема включения ВКЦ приведена на рисунке (4.10). Рисунок 4.10 - Схема выходной корректирующей цепи При работе усилителя без ВКЦ модуль коэффициента отражения ощущаемого сопротивления нагрузки внутреннего генератора транзистора равен , (4.40) а уменьшение выходной мощности относительно максимального значения, обусловленное наличием Cвых, составляет: - максимальное значение выходной мощности на частоте - максимальное значение выходной мощности на частоте позволяет при заданной величине усилителя таким образом рассчитать элементы ВКЦ , что максимальное значение модуля коэффициента отражения минимально возможно. Найдём – выходная емкость транзистора нормированная относительно Рисунок 4.11 – Схема каскада с ВКЦ Теперь, согласно методике Фано, по таблице, приведённой в и выберем соответствующие ему нормированные величины элементов ВКЦ –коэффициент, определяющий величину ощущаемого сопротивления нагрузки Найдём истинные значения элементов по формулам: . (4.45) В результате получится: Ом. 4.5.2 Расчет межкаскадной корректирующей цепи Существует много межкаскадных корректирующих цепей для коррекции АЧХ, но так как расчитывается широкополосный усилитель, то нужна корректирующая цепь, которая обеспечивала бы требуемую неравномерность АЧХ на широкой полосе частот.

скачать реферат Расчет корректирующих цепей широкополосных усилительных каскадов на биполярных транзисторах

Данная работа предназначена для начинающих разработчиков широкополосных усилителей и содержит: наиболее известные и эффективные схемные решения построения широкополосных усилительных каскадов на БТ; соотношения для их расчета по заданным требованиям; примеры расчета. Поскольку, как правило, широкополосные усилители работают в стандартном 50 либо 75-омном тракте, соотношения для расчета даны исходя из условий, что оконечные каскады усилителей работают на чисто резистивную нагрузку, а входные каскады усилителей работают от чисто резистивного сопротивления генератора. 1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА В соответствии с , приведенные ниже соотношения для расчета усилительных каскадов основаны на использовании эквивалентной схемы замещения транзистора приведенной на рисунке 1.1, либо на использовании его однонаправленной модели приведенной на рисунке 1.2. Рисунок 1.1 - Эквивалентная схема Джиаколетто Рисунок 1.2 - Однонаправленная модель Значения элементов схемы Джиаколетто могут быть рассчитаны по паспортным данным транзистора по следующим формулам : =3 - для планарных кремниевых транзисторов, =4 - для остальных транзисторов, ;;; где - емкость коллекторного перехода; - постоянная времени цепи обратной связи; - статический коэффициент передачи тока в схеме с общим эмиттером; - граничная частота коэффициента передачи тока в схеме с общим эмиттером; - ток эмиттера в рабочей точке в миллиамперах.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.