![]() 978 63 62 |
![]() |
Сочинения Доклады Контрольные Рефераты Курсовые Дипломы |
РАСПРОДАЖА |
все разделы | раздел: | Физика |
Механика Ньютона - основа классического описания природы | ![]() найти еще |
![]() Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок |
Ньютон создал основы классической механики как целостной системы знаний о механическом движении тел, сформулировал три ее основных закона, дал математическую формулировку закона всемирного тяготения, обосновал теорию движению небесных тел, определил понятие силы, создал дифференциальное и интегральное исчисление как язык описания физической реальности, выдвинул предположение о сочетании корпускулярных и волновых представлений о природе света. Механика Ньютона стала классическим образцом дедуктивной научной теории. Также как и Ньютон, немецкий ученый Готфрид Вильгельм Лейбниц (1646-1716) был убежден, что все в мире существующее должно быть объяснено с помощью исключительно механических начал. Природа - это совершенный механизм, и все - от неорганического до живых организмов - создано гениальным механиком Богом. И познаваться этот механизм может с помощью механических причин и законов. Отметим основные научные достижения Лейбница (вопреки его механистическому материализму вначале, а затем объективному идеализму особенно в "Монадологии"): 124 1
Атомы рассматриваются как некие цельные, неделимые «кирпичики»; соединяясь друг с другом, они образуют молекулы, а те в свою очередь – тела. Природа этого соединения не рассматривается. Выделяют четыре принципиальных момента механической картины мира: 1. мир в механической картине построен на едином фундаменте – на законах механики Ньютона. Все наблюдаемые в природе превращения, тепловые явления сводятся на уровне микроявлений к механическому движению атомов и молекул (их перемещениям, столкновениям, соединениям и разъединениям). Открытие закона сохранения и превращения энергии, казалось бы, окончательно доказывает механическое единство мира – все виды энергии можно свести к энергии механического движения. С такой точки зрения мир выглядит стройной гигантской машиной, построенной и функционирующей по законам механики. Даже исследования электрических и магнитных явлений сначала не подрывали, а лишь усложняли и дополняли механическую картину мира. Например, под этим углом зрения может рассматриваться, и в прошлом рассматривалось, внешнее сходство закона Кулона с законом всемирного тяготения. 2. механическая картина мира исходит из представлений, что микромир аналогичен макромиру.
Таковы основные черты первоначального восприятия космоса на уровне мифологии. АНТИЧНАЯ КАРТИНА МИРА Первая картина мира, которую можно назвать научной, сформировалась в следующую историческую эпоху - эпоху античности. Практические потребности нового времени, развитая система рабовладельческих обществ потребовали решения ряда научно-прикладных задач - развития географии, звездной навигации, совершенствования системы календаря и т.д. Ученые античности впервые поставили и решили эти задачи. Пифагор - автор термина "космос" в современном понимании сформулировал учение о божественной роли чисел, которые управляют мирозданием. Он предложил пироцентрическую систему мира, согласно которой Солнце и планеты под музыку небесных сфер вращаются вокруг центрального огня. Мистика чисел, разработанная Пифагором и его последователями, оказалась весьма живучей и была положена в основу магии и астрологии. Но одновременно идеи пифагорейской школы о роли чисел были использованы в количественном анализе, ставшем в новое время основой научного описания природы
Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать исследование нужно с концепций классической физики. Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира — механической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы — научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования. Выделение отдельных характеристик объекта позволяло строить теоретические модели и проверять их в условиях научного эксперимента. Эта методологическая концепция, впервые сформулированная Галилеем в труде "Пробирные весы", оказала решающее влияние на становление классического естествознания. И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами.
Что изучает классическая механика? Классическая механика изучает движение макроскопических тел со скоростями, малыми по сравнению со скоростью света. В основе классической механики лежат законы Ньютона. Движение микрочастиц (способ описания и законы движения) в заданных внешних полях изучает квантовая механика, а законы механического движения тел (частиц) при скоростях, сравнимых со скоростью света, изучает релятивистская механика, основанная на специальной теории относительности. Что удерживает Луну на околоземной орбите? Упасть за Землю нашему естественному спутнику не позволяет его орбитальная скорость, превышающая первую космическую. А вырваться из гравитационных объятий Земли и навсегда покинуть ее окрестности мешает земное притяжение, для преодоления которого орбитальная скорость Луны недостаточно велика (меньше второй космической скорости). Чем математический маятник отличается от физического? Математическим маятником называют материальную точку, совершающую под действием силы тяжести колебательные движения
Объективность познания мира, согласно положениям естествознания, достижима при условии, если из описания и объяснения исключается все, что относится к исследователю и процедурам его познавательной деятельности. Главной целью естествознания провозглашалось построение абсолютно истинной картины мира, познание объективных законов природы. Наука ориентирована на предметное и объектное исследование действительности. Фактическим образцом для наук XVIII в. стала новая механика Ньютона, а идеи механицизма стали в классическом естествознании доминирующими. Свойства целого объекта полностью определяются состоянием и свойствами его частей. Объяснение понималось как поиск механических причин, лежащих в основе наблюдаемого явления. Научное познание природного мира строилось при помощи наблюдения и экспериментирования с объектами природы. Исследователь занимал по отношению к объекту познания позицию извне, позицию незаинтересованного, беспристрастного субъекта. Центральное место в естествознании отводилось индуктивному методу: достаточное количество сходных единичных наблюдений или экспериментальных данных служило основанием для утверждения причинной связи в изучаемом объекте, условием формулирования общего правила.
Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать исследование нужно с концепций классической физики. Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира - механической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы - научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования. Галилей писал: “Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество и более или менее быстрого движения для того, чтобы объяснить возникновение вкуса, запаха и звука”. Выделение отдельных характеристик объекта позволяло строить теоретические модели и проверять их в условиях научного эксперимента. Эта методологическая концепция, впервые сформулированная Галилеем в труде “Пробирные весы”, оказала решающее влияние на становление классического естествознания. И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами.
Такая интерпретация (получившая название копенгагенской) поставила волновую механику на прочную физическую основу и выбила почву из-под многих спекуляций, в том числе из-под наивных реалистических рассуждений Шрединдерга. Долгое время одни выдающиеся физики (Бор, Борн, Паули) придерживались концепции, что все явления природы подлежат лишь вероятностной интерпретации, в то время как для многих не менее выдающихся физиков нашего столетия, в том числе многих создателей квантовой механики (Шредингер, Эйнштейн, Луи де Бройль, Макс Планк) подобное статистическое истолкование квантовой теории оказалось крайне неприемлемым. Они придерживались концепции причинности и детерминизма восходящих своими корнями к классической механике. Суть спора сводилась к следующему: является ли статистический характер законов квантовой физики результатом неполного знания, и не уступят ли эти законы свое место новым, не менее детерминистским, как законы Ньютона, или вероятность лежит в основе законов самой природы. Так во время пребывания в Копенгагене Шредингер заявил Бору: Если мы собираемся сохранить эти проклятые квантовые скачки, то приходиться пожалеть, что я вообще занялся квантовой теорией ( c.48). Для него было страшно представить, что электрон “мог прыгать, как блоха” (, стр. 51). Широко известно выражение Эйнштейна, что “Бог не играет в кости”.
Напротив, эффект вырождения результирующего импульса является тем мостом, который связывает воедино всю классическую динамику от динамики Ньютона до динамики структур Пригожина и является фундаментом для идей Больцмана. Именно эффект вырождения результирующего импульса приводит к единообразию описания природы, т.к. вся классическая динамика от динамики Ньютона (динамики счётного числа частиц) до динамики не счётного числа частиц (термодинамика, теплопередача, гидродинамика, электродинамика токов, биофизика) строится исходя из трёх постулатов, лежащих в основе динамики Ньютона: 1) закон сохранения и превращения энергии; 2) закон сохранения результирующего импульса (момента импульса); 3) корпускулярный характер строения материи. Эффект вырождения результирующего импульса объёдиняет также оба направления эволюции (по Клаузиусу и по Дарвину), объясняя их с единых позиций. В И. Пригожин пишет: “ мы вправе задать фундаментальные вопросы: какое место занимают необратимые процессы в нашем описании физического мира? Как эти процессы связаны с динамикой?”.
Для песчинок, скажем, неопределенность произведения их линейного размера на скорость настолько незначительна, что ею можно пренебречь. Иными словами, постоянная Планка проводит границу между макромиром, где действуют законы механики Ньютона, и микромиром, где вступают в силу законы квантовой механики. Будучи получена всего лишь для теоретического описания единичного физического явления, постоянная Планка вскоре стала одной из фундаментальных констант теоретической физики, определяемых самой природой мироздания. Макс Карл Эрнст Людвиг ПЛАНК Max Karl Er s Ludwig Pla k, 1858–1947 Немецкий физик. Родился в г. Киль в семье профессора юриспруденции. Будучи пианистом-виртуозом, Планк в юности был вынужден сделать нелегкий выбор между наукой и музыкой (рассказывают, что перед первой мировой войной на досуге пианист Макс Планк часто составлял весьма профессиональный классический дуэт со скрипачом Альбертом Эйнштейном. — Прим. переводчика) Докторскую диссертацию по второму закону термодинамики Планк защитил в 1889 году в Мюнхенском университете — и в том же году стал преподавателем, а с 1892 года — профессором Берлинского университета, где и проработал до своего выхода на пенсию в 1928 году.
Надо подчеркнуть, что эстетическая ценность теории, преодоленной дальнейшим развитием науки, исчезает, точнее, она сохраняется для историков науки, но не для ученых. Эпициклы Птолемея перестали быть прекрасными после открытия Коперника. Программа Птолемея перестала быть минимальной. Обратимся к другим примерам. Наибольшие достижения естествознания, имеющие непреходящее научное и эстетическое значение, состоят в нахождении общих законов, сводящих грандиозную сложность многообразных явлений природы к грандиозной простоте. Это и классическая механика Ньютона, и специальная и общая теории относительности Эйнштейна. Главная идея Фарадея состояла в раскрытии единства различных сил природы. На этом пути Фарадей открыл взаимосвязь электричества и магнетизма – электромагнитную индукцию. Впоследствии закон Фарадея лег в основу динамо-машины. Знакомство с трудами Фарадея вызывает эстетические переживания. Вслед за Фарадеем Максвелл построил математическую теорию электромагнитных явлений, представленную в предельно лаконичных формулах. Был сделан новый шаг на пути минимизации программы, на пути повышения эстетической значимости.
Несмотря на то, что подавляющее большинство естествоиспытателей уверено в познаваемости мира, требовался серьезный философский анализ возникшей проблемы. По-видимому, выход состоит в признании неприменимости методов описания макроскопических объектов к объектам микромира: если объект не обладает какими-либо характеристиками, то невозможности их точного экспериментального определения вовсе не означает невозможности изучения объекта (бессмысленность попыток получить экспериментально ответ на вопрос о длине хвоста черта не означает невозможности познания мира в целом). Т.о. соотношение неопределенности является “подсказкой” природы о том, что привычный язык классической кинематики и динамики Ньютона малопригоден для описания процессов с участием объектов микромира. Особенности квантово-механического описания. “Правила игры” квантовомеханического описания нерелятивистских макро- и микроскопических объектов не могут быть выведены, исходя из “привычных” классических законов, поскольку являются более общими и включают в себя эти классические законы, как частный случай, получаемый в виде чисто математических следствий из постулируемых принципов квантовой механики (принцип соответствия должен выполняться).
Примерами таких теорий могут служить классическая механика Ньютона, эволюционное учение Дарвина или квантовая физика. Сейчас знач. понятия парадигмы еще больше расширилось, поскольку оно применяется не только к отдельным наукам, но и к междисциплинарным направл-ям ислед. (35) Принцип Обратной Связи. Типичным примером таких междисциплинарных парадигм явл. возникшая полвека назад кибернетика и появившееся четверть в. спустя синергетика. Под синергетикой в настоящее время подразумевают область научных ислед., целью кот. явл. выявление общих законмрностей в процессах образования , устойчивости и разрушения упорядоченных временных и пространственных структур в сложных неравновесных сист. различной природы (физических, химических биологических , экологических, социальных). (36) Синергетика и Кибернетика. Определим, что лежит в основе кибернетики и синергетики. Кибернетика в основном занималась анализом динамического равновесия в самоорганизующихся сист. Она опиралась на принцип отрицательной обратной связи , сглсно кот всякое отклонение системы корректируется управляющем устройством после получения сигнала информации об этом.
Однако для описания процессов, происходящих с элементарными частицами, квантовой механики оказалось недостаточно. Понадобился следующий шаг — квантование классических полей (т. н. квантование вторичное) и разработка квантовой теории поля. Важнейшими этапами на пути её развития были: формулировка квантовой электродинамики (П. Дирак, 1929), квантовой теории b-распада (Э. Ферми, 1934), положившей начало современной теории слабых взаимодействий, квантовой мезодинамики (Юкава, 1935). Непосредственной предшественницей последней была т. н. b-теория ядерных сил (И. Е. Тамм, Д. Д. Иваненко, 1934; Сильные взаимодействия). Этот период завершился созданием последовательного вычислительного аппарата квантовой электродинамики (С. Томонага, Р. Фейнман, Ю. Швингер; 1944—49), основанного на использовании техники перенормировки (Квантовая теория поля). Эта техника была обобщена впоследствии применительно к другим вариантам квантовой теории поля. Квантовая теория поля продолжает развиваться и совершенствоваться и является основой для описания взаимодействий элементарных частиц У этой теории имеется ряд существенных успехов, и всё же она ещё очень далека от завершённости и не может претендовать на роль всеобъемлющей теории элементарных частиц Происхождение многих свойств элементарных частиц и природа присущих им взаимодействий в значительной мере остаются неясными.
И поскольку в основе квантового способа описания природы лежат результаты взаимодействия микрообъекта с макроприбором, как раз необходимо ввести представление об относительности к средствам наблюдения, которое является обобщением идеи относительности. Такое обобщение представления об относительности, утверждает В.А.Фок, отнюдь не означает что микрообъект менее реален, чем классический прибор. Совсем наоборот: представление об относительности к средствам наблюдения позволяет глубже и точнее характеризовать явления в микромире. Следует указать также на то, что квантовый способ описания как более конкретный и совершенный требует соответствующего математического аппарата, применение которого в свою очередь, ведет к выявлению новых фундаментальных свойств материи. Толкование понятий, используемых в квантовой теории, диктует необходимость обобщения понятия состояния системы на основе понятий вероятности и потенциальной возможности. Понятие вероятности в квантовой механике вовсе не говорит о некоторой неполноте нашего знания о микромире, а наоборот, являясь существенным элементом квантово-механического описания, дает возможность уточнить само представление о полноте описание.
Они придерживались концепции причинности и детерминизма восходящих своими корнями к классической механике. Суть спора сводилась к следующему: является ли статистический характер законов квантовой физики результатом неполного знания, и не уступят ли эти законы свое место новым, не менее детерминистским, как законы Ньютона, или вероятность лежит в основе законов самой природы. Так во время пребывания в Копенгагене Шредингер заявил Бору: Если мы собираемся сохранить эти проклятые квантовые скачки, то приходиться пожалеть, что я вообще занялся квантовой теорией . Для него было страшно представить, что электрон "мог прыгать, как блоха" . Широко известно выражение Эйнштейна, что "Бог не играет в кости". Эта же мысль прослеживается в письме Дж. Франку: Я могу еще, если на то пошло, понять, что Господь Бог мог сотворить мир, в котором нет законов природы. Короче говоря, хаос. Но то, что должны быть статистические законы с вполне определенными решениями, например законы, вынуждающие Господа Бога бросать кости в каждом отдельном случае, я считаю в высшей степени неудовлетворительным .
Долгое время одни выдающиеся физики (Бор, Борн, Паули) придерживались концепции, что все явления природы подлежат лишь вероятностной интерпретации, в то время как для многих не менее выдающихся физиков нашего столетия, в том числе многих создателей квантовой механики (Шредингер, Эйнштейн, Луи де Бройль, Макс Планк) подобное статистическое истолкование квантовой теории оказалось крайне неприемлемым. Они придерживались концепции причинности и детерминизма восходящих своими корнями к классической механике. Суть спора сводилась к следующему: является ли статистический характер законов квантовой физики результатом неполного знания, и не уступят ли эти законы свое место новым, не менее детерминистским, как законы Ньютона, или вероятность лежит в основе законов самой природы. Так во время пребывания в Копенгагене Шредингер заявил Бору: Если мы собираемся сохранить эти проклятые квантовые скачки, то приходиться пожалеть, что я вообще занялся квантовой теорией . Для него было страшно представить, что электрон "мог прыгать, как блоха" . Широко известно выражение Эйнштейна, что "Бог не играет в кости". Эта же мысль прослеживается в письме Дж.
Только заменив иллюзии на объективные знания, человечество сможет выйти из надвигающегося системного кризиса. Замеченный уже многими специалистами, разрастающийся всеобъемлющий кризис: научный, энергетический, социальный, экономический, экологический - заставляет вернуться к корням "дерева познания" и еще раз проанализировать всю историю становления современной науки, начиная с ее основ! 3. Роковые ошибки классиков. Основу неверного описания законов природы заложил в физику, как это ни странно может показаться вначале, - Галилей. Он сформулировал два вывода: первый, - что без воздействия на тела, они покоятся или движутся прямолинейно и равномерно (хотя до этого естественным считали движении по окружности) и второй, - что тела любого веса падают на Землю одинаково быстро. И сегодня мы продолжаем считать, что ускорение падения не зависит от массы тел, - но оба эти вывода не соответствуют действительности! Затем свой вклад в идеализацию физики внес Ньютон. Он "объяснил" ускоренное смещение тел в направлении друг к другу не физической моделью (как это делали Лессаж, Ломоносов, Пуассон, Картран и др. материалисты), а гипотезой, состоящей всего из одного слова, - "притяжение"! Математический аппарат, который Ньютон специально создал для вычисления смещения тел, также построен на ошибочном предположении - на гипотезе о непрерывном и линейном делении любой физической величины до сколь угодно малой математической величины, что также не соответствует действительности! К сожалению, последователи Ньютона безропотно согласились еще и с тем обстоятельством, что в законах механики нет определения и истории происхождения самого "тела", - массы (инертной, инерционной или гравитационной).
![]() | 978 63 62 |