![]() 978 63 62 |
![]() |
Сочинения Доклады Контрольные Рефераты Курсовые Дипломы |
РАСПРОДАЖА |
все разделы | раздел: | История | подраздел: | Историческая личность |
Энрико Ферми | ![]() найти еще |
![]() Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок |
Эйнштейн понял опасность, которую таило любое промедление, и "экспромтом" продиктовал письмо Рузвельту. Вигнер так заканчивает свое сообщение: "Во время нашего визита к Эйнштейну мы знали очень мало или почти ничего не знали о работах немцев в связи с расщеплением урана. Нам известен был тот факт, что Вайцзеккер занимает высокий пост в правительстве, а его сын - известный физик. Поэтому мы предполагали, что германское правительство знает о возможностях расщепления урана. Но это было только предположение". В начале письма Эйнштейна говорится: "Новая работа Энрико Ферми и Лео Сциларда, которая передана мне в рукописи, заставляет меня предполагать, что элемент уран в близком будущем можно будет превратить в новый важный источник энергии. Известные аспекты сложившейся из-за этого ситуации, по-видимому, требуют бдительности и в случае необходимости быстрых действий со стороны правительства". Эйнштейн изложил затем ряд предложений и рекомендаций. Он указал на то, что расщепление ядра, вероятно, можно будет использовать для изготовления бомб нового вида
Дейтерий представляет довольно «рыхлую» систему, в которой протон удален от нейтрона на сравнительно большое расстояние. На рис 4 показаны распределения электрического заряда и магнитного момента как функции расстояния от центра нейтрона. В нейтроне при простреливании его электронами обнаруживаются разноименно заряженные слои, которые нейтрализуют друг друга. Эти слои состоят из одних и тех же заряженных (- мезонных облаков, действие которых усиливается в случае протона и ослабляется в случае нейтрона. Одним из первых, кто вместо ?-частиц решил использовать нейтроны для обстрела ядер атомов, был молодой итальянский ученный Энрико Ферми. В скромной лаборатории Римского университета Ферми со студентами собрал первую установку для изучению ядерных реакций, вызываемых нейтронами. Допустим, что бомбардируют нейтронами изотоп натрия с массовым числом 23, ядро которого содержит 11 протонов и 12 нейтронов. При поглощении нейтрона ядром атома натрия-23 энергия ядра увеличивается, оно находится в возбужденном состоянии.
Потом обычно можно было видеть, как они медленно возвращались с разочарованными лицами. Для первых восьми элементов физики не смогли обнаружить никакой искусственной радиоактивности. Однако на девятом элементе, фторе, счетчик вдруг защелкал. Вскоре итальянцы установили, что облучение нейтронами активизирует многие элементы. Чаще всего последние излучали бета-лучи и превращались при этом в атомы следующего элемента. Ферми открыл "радиоактивность, индуцированную бомбардировкой нейтронами". Так назвал он статью, написанную 10 апреля и опубликованную в мае 1934 года в журнале "Нейчур", Спор вокруг девяносто третьего элемента Интересных результатов Энрико Ферми ожидал для последнего элемента периодической системы. Уран является самым тяжелым элементом, встречающимся на Земле. Ядро этого атома состоит из 92 протонов и 146 нейтронов. Относительная атомная масса в результате составляет 238, точнее, для изотопа [238]U. Уже тогда предполагали, что уран состоит не только из этого изотопа. Например, гипотетический актиноуран должен был быть легче
Учитывая огромный авторитет Эйнштейна и серьезность международной обстановки, Рузвельт дал свое согласие. В конце 1941 года жители Чикаго могли заметить царившее на территории одного из стадионов необычное оживление, которое не имело к спорту ни малейшего отношения. К воротам его то и дело подъезжали машины с грузом. Многочисленная охрана не разрешала посторонним даже приближаться к ограде стадиона. Здесь, на теннисных кортах, расположенных под западной трибуной, Энрико Ферми готовил свой опаснейший эксперимент — осуществление контролируемой цепной реакции деления ядер урана. Работы по сооружению первого в мире ядерного реактора велись днем и ночью в течение года. Наступило утро 2 декабря 1942 года. Всю ночь ученые не смыкали глаз, снова и снова проверяя расчеты. Шутка ли сказать: стадион находится в самом центре многомиллионного города, и хотя расчеты убеждали в том, что реакция в атомном котле будет замедленной, т. е. не будет носить взрывного характера, рисковать жизнью сотен тысяч людей никто не имел права.
Ган вскочил и, оставив в пепельнице тлеющую сигару, бросился в лабораторию. Начались исследования, в результате которых мир узнал о гом, что ядро урана делится и среди продуктов деления обнаружены барий и стронций. Немецким ученым была присуждена Нобелевская премия... Работа Гана и Штрассмана была последним звеном в цепи зарубежных и советских открытий, которые привели итальянца Энрико Ферми к убеждению, что можно осуществить цепную ядерную реакцию в специальной установке. Ученые почти всех стран Западной Европы, вынужденные покинуть свою родину, где хозяйничали фашисты, и собравшиеся в Америке, совершили подлинный переворот в науке, вызвав самоподдерживающуюся цепную реакцию... В 1942 году под трибунами стадиопа в Чикаго первый на нашей планете ядерный реактор был запущен. ...И вот летом 1963 года мы - два советских аспиранта, обучающихся в ФРГ, и я - долго кружили среди приземистых корпусов Майнцского университета. Институт неорганической химии, который возглавляет профессор Штрассман, находится на самой окраине университетского городка
В 1933 году Патрик Блэкетт и Джузеппе Оккиалини подтверждают открытие Андерсона. Гилберт Льюис и Р. Макдональд в США открывают тяжелую воду. Сразу во Франции (Ирен и Фредерик Жолио-Кюри), в Англии (Блэкетт, Оккиалини и Чэдвик), в США (Андерсон) и в Германии (Л. Мейтнер) обнаруживают рождение электронно позитронных пар из жестких гамма квантов вблизи ядер достаточно тяжелых элементов. В 1934 году Энрико Ферми, добавив гипотезу Вольфганга Паули о нейтрино (безмассовой нейтральной частице, вылетающей при бета-распаде) к протонно- нейтронной модели ядра, создает теорию бета-распада. Тот же Ферми публикует первые работы по облучению урана медленными нейтронами, где приходит к выводу, что ему удалось получить новые элементы номер 93 и 94 (их химическую идентификацию провести Ферми не удалось – не было достаточного количества для анализа). Ирен и Фредерик Жолио-Кюри экспериментально открывают явление искусственной радиоактивности химических элементов. Ида Ноддак (Германия) теоретически предсказывает возможность деления ядер урана.
Стеки калориметра не представляют для нее препятствия, и частица уносит с собой ту часть энергии, импульса и момента импульса, которая недосчитывалась у электрона. Когда Паули излагал эту идею, Энрико Ферми перебил его словами: - Называйте его "нейтрино"! - 7 - Дело в том, что по-итальянски уменьшительно-ласкательное окончание "ино" соответствует русскому суффиксу "чик". Так что переводе с итальянского нейтрино будет означать "нейтрончик". Теперь уравнения - распада для нуклонов примут следующий вид: e - распад. (3) Паули наделил новую частицу свойствами весьма неприятными для тех, кто попытался бы ее зарегистрировать. Предполагалось также, что нейтрино имеет нулевой магнитный момент и собственный момент импульса, спин, равный /2 или во всяком случае полуцелый. После того, как Паули предложил идею нейтрино, он сказал своему другу, известному астроному Вальтеру Бааде :"Я сделал сегодня что-то ужасное. Физику теоретику никогда не следует делать этого. Я предложил нечто, что никогда нельзя будет проверить экспериментально". Бааде предложил Паули пари на бутылку шампанского. Он стал утверждать, что нейтрино будет зарегистрировано при их жизни.
Цепная реакция деления урана впервые была осуществлена в 1942 г. в США, в реакторе, который группа исследователей во главе с итальянским ученым Энрико Ферми построила в помещении стадиона Чикагского университета. Этот реактор имел размеры 6х6х6,7 м и мощность 20 кВт; он работал без внешнего охлаждения. Первый ядерный реактор в СССР (и в Европе) был построен под руководством акад. И. В. Курчатова и запущен в 1946 г. Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают мнение, что к 21 веку около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях. В принципе энергетический ядерный реактор устроен довольно просто – в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар.
Такими пассажирами могут быть лишь замороженные и высушенные микроорганизмы. Они устойчивы к излучениям и перенесут сверхдлительный космический перелет. Устойчивы они и к огромным ускорениям, так что эти гипотетические корабли могут набирать скорость самым экономичным путем - взрывным ускорением в сотни g. Если условия на поверхности новой планеты окажутся пригодными, начнется стремительное размножение - и последующая эволюция, вплоть до появления человека. А что значит пригодные условия? Мы знаем микроорганизмы, живущие без кислорода, в горячей серной кислоте, использующие в качестве источника энергии серу и восстановленные металлы. Многие земные бактерии, похоже, отлично выживут на Марсе или хотя бы на полюсах Венеры. И Крик вспоминает старый спор между великими физиками-атомщиками Энрико Ферми и Лео Сцилардом. Сцилард был горячим сторонником сверхцивилизаций, рассеянных по космосу, и скептик Ферми спросил: "Если их много, почему мы их не видим и не слышим? Где же они?" И Крик полагает, что нашел ответ: "Они - это мы, вернее, мы - их сверхотдаленные потомки.
, проблемы и перспективы развития. В истории человечества не было научного события, более выдающегося по своим последствиям, чем открытие деления ядер урана и овладение ядерной энергией. Человек получил в свое распоряжение огромную, ни с чем не сравнимую силу, новый могучий источник энергии, заложенный в ядрах атомов. Начало ядерной физики положила опубликованная в декабре 1895г. работа В.Рентгена «О новом роде лучей». Он назвал их Х-лучами, впоследствии они получили название рентгеновских. До 1940г. все работы по ядерной физике широко публиковались. С началом второй мировой войны вся информация и обмен новыми данными были прекращены. Первый ядерный реактор был пущен в США 2/12/1942г. под руководством итальянского ученого Энрико Ферми. Первая в мире атомная электростанция вошла в строй в июне 1954г. а подмосковном городе Обнинске. Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии. Научно-технический прогресс, повышение качества продукции, улучшение условий труда, интенсификация всего общественного производства определяются развитием энергетики страны, основой которой являтся топливная база.
Лаборатории по созданию атомной бомбы были размещены в Лос-Аламосе. Американцы собрали лучшие научные силы: Ферми, Бете, Чедвика, Фриша, Комптона, Сцилорда. Роль руководителя, главного аналитика исполнял Николас Бейкер - так теперь звали Бора . Работы проводились в условиях строжайшей секретности , тратились огромные средства и 16 июля 1945 года в штате Нью- Мехико была взорвана первая в мире атомная бомба. Результаты испытания были ужасающими , которые американцы не замедлили продемонстрировать в Хиросиме и Нагасаке. “Все ученые Лос-Аламоса испытывали чувство вины. Мы сделали работу за дьявола” - вспоминает впоследствии Энрико Ферми. Еще в 43 году Бору и Эйнштейн прилагали нечеловеческие усилия по предотвращению бомбардировок, но ни Рузвельт ни Трумэн не захотели услышать голос благоразумия. 11 августа 1945 года Бор выступает в газете “Таймс” , где он обвиняет штаты в нецелесообразности использования ядерных бомбардировок в Японии и призывает всех к международному контролю над новым видом вооружения. В последующие годы он очень много внимания уделял этой проблеме, несмотря на рост холодной войны и гонки вооружения. До конца своих дней Бор успел сделать много полезных дел для развития науки среди которых были : - строительство лаборатории при институте теоретической физики; - создание ЦЕРНа - Европейского Совета по ядерным исследованиям; - постройка датского атомного реактора.18 ноября 1962 Нильс Бор скончался , оставив после себя такое количество проделанной работы , которым могла бы гордиться даже целая группа людей.Литература.1. Е.М.Кляус, У.И.Франкфурт, А.М.Френк. “Нильс Бор”//Наука .М.-1977.
В наибольшей мере «утечка умов» затронула Азию, в первую очередь Индию, Филиппины. Наряду с экономическими, внешние миграции нередко вызываются и политическими причинами (отсюда слово «политэмигрант»). Примеры подобного рода-эмиграция почти полумиллиона граждан, преимущественно «интеллектуалов» (Альберт Эйнштейн, Лион Фейхтвангер, Энрико Ферми и др.) из фашистской Германии и Италии, из франкистской Испании. В середине 70-х юдов после прихода к власти в Чили генерала Пиночета эту страну покинуло более 1 млн человек. Политическая эмиграция в широких масштабах имела место также в дореволюционной России и СССР, на Кубе, во Вьетнаме, в Камбодже, многих других странах. После поражения фашистской Германии почти 10 млн немцев были переселены из стран Восточной Европы в ФРГ, ГДР и Западный Берлин. Крушение колониальной системы в 50-70-х годах привело к оттоку белого населения из бывших колоний в метрополии. Большая часть англичан возвратилась из Индии, Пакистана, ряда других владений, французов-из Алжира, Туниса, Марокко, итальянцев-из Ливии, Эфиопии, португальцев - из Анголы и Мозамбика.
Такой эксперимент является методически не правильным. Попытка теоретического доказательства «закона Джоуля» (ошибка Ферми) Общеизвестно, что физический закон может быть доказан только экспериментально. Однако творцы термодинамики для «закона Джоуля» сделали исключение, сознавая, по-видимому, всю слабость его экспериментальных обоснований. В курсе термодинамики Энрико Ферми приводится теоретическое «доказательство» «закона Джоуля». В этом «доказательстве» допущена явная логическая ошибка, см. полный вариант статьи. Дросселирование газов Джоуль совместно с Томсоном провели эксперименты по дросселированию газов и открыли эффект снижения температуры при дросселировании для большинства газов. Исключение составили водород и гелий, у них температура слабо повышалась. Но при анализе процесса дросселирования Джоулем и Томсоном были допущены ошибки. В частности, они сделали вывод: что энтальпия в процессе дросселирования не изменяется. Это не так. Установившийся поток не может существовать без подвода энергии. Эта энергия подводится от компрессора или от ресивера и затрачивается на проталкивание газа через дроссель и на преодоление сил трения в дросселе.
Он был обнаружен Гиорсо и сотрудниками это восьмой открытый переходный элемент из актиноидов. Самый долгоживущий изотоп фермия жил 82 дней. Обнаруженный (кем): Рабочие в Аргонне, Лос-Аламосе, США, и Университете Калифорнии в Беркли, США. Обнаруженный в: США, Обнаружен когда: 1952 Фермий (после Энрико Ферми) был сначала обнаружен командой во главе с Альбертом Гиорсо в 1952. Команда обнаружила 255Fm в развалинах первого водородного взрыва бомбы. Этот изотоп был создан, когда 238U объединился с 17 нейтронами при интенсивной температуре и давлении взрыва (восемь бета распадов также произошли, чтобы создать элемент). За работой наблюдал Университет Калифорнийской Лучевой Лаборатории, Аргон Национальная Лаборатория, и Лос-Аламос Научная Лаборатория, члены команды которой включали Гиорсо, Стэнли Г. Томпсон, Гэри Х. Хиггинс, Гленн Т. Сиборг, Мартина Х. Студира, P.R. Фаилдс, Шерман М. Фрид, H. Диамонд, Мич и т.д. Были использованы образцы морского коралла, на который воздействовали первым термоядерным взрывом в ноября 1952.
В 1936 построил общую теорию классических полей. Высказал (1937) гипотезу изменения гравитации со временем, работал над проблемой гамильтоновой формулировки теории гравитации для дальнейшего квантования гравитационного поля. В 1942 ввел понятие индефенитной метрики для устранения бесконечности собственной энергии электрона, в 1962 разработал теорию мюона, описываемого как колебательное состояние электрона. Из теории Дирака следовало существование позитрона, который действительно был обнаружен в 1932-33 г.г. при ядерных распадах под действием космических лучей (открыты в 1911-13 г.г. австрийским физиком Виктором Францем Гессом (1883-1964)) американским физиком Карлом Дэвидом Андерсоном (р.1905) (Нобелевская премия по физике, 1936), а также английским физиком Патриком Мейнардом Стюардом Блэккетом (1897-1974) и итальянским физиком Джузеппе Оккиалини (р.1907). Развивались и статистические методы описания поведения квантовых объектов. В 1924-25 г.г. индийский физик Шатвендранат Бозе (1894-1974) и Эйнштейн создали новую квантовую статистику для фотонного газа, получив распределение Планка, а в 1926 г. почти одновременно Ферми и Дирак вывели с учетом запрета Паули вывели свою статистику для электронов. Ферми Энрико (29.09.1901-28.11.1954) - итальянский физик, член Национальной академии деи Линчеи (1935), многих академий наук и научных обществ, иностранный член АН СССР (1929).
Электронов в космических лучах не более 1-2 %. Поток космических лучей изотропен - он приходят к Земле равномерно со всех сторон (кроме, конечно, частиц, испускаемых Солнцем). Космические лучи, распространяясь в межзвездных магнитных полях, способны создавать синхротронное излучение. Общее радиоизлучение Галактики известно с конца 40-х годов. Его мощность составляет Напомним, что мощность оптического излучения Галактики эквивалентна свету приблизительно солнц. Однако радиомощность Галактики несравненно больше. Объяснение общего радиоизлучения Галактики как синхротронного излучения электронов космических лучей предложено В. Л„ Гинзбургом в 1950—1951 гг. Основной вопрос физики космических лучей с самого начала ее развития — природа их высокой энергии. Он до сих пор еще не решен. Обсуждается целый ряд интересных возможностей: ускорение частиц в межзвездных магнитных полях (как это предполагал еще в 40-е годы Э. Ферми), в оболочках, сбрасываемых при вспышках сверхновых (эта идея развивается сейчас многими авторами), в ядре Галактики или даже вне ее — в квазарах.
Небольшую опасность для водной среды из металлов представляют ртуть, свинец и их соединения . Расширенное производство (без очистных сооружений) и применение ядохимикатов на полях приводят к сильному загрязнению водоемов вредными соединениями. Загрязнение водной среды происходит в результате прямого внесения ядохимикатов при обработке водоемов для борьбы с вредителями, поступления в водоемы воды, стекающей с поверхности обработанных сельскохозяйственных угодий, при сбросе в водоемы отходов предприятий- производителей, а также в результате потерь при транспортировке, хранении и частично с атмосферными осадками. Наряду с ядохимикатами сельскохозяйственные стоки содержат значительное количество остатков удобрений (азота, фосфора, калия), вносимых на поля. Кроме того, большие количества органических соединений азота и фосфора попадают со стоками от животноводческих ферм, а также с канализационными стоками. Повышение концентрации питательных веществ в почве приводит к нарушению биологического равновесия в водоеме. Вначале в таком водоеме резко увеличивается количество микроскопических водорослей.
В этой группе несколько родов (A urophasis, Co ur ix, Excalifac oria). Настоящие перепела обитают в Европе, Азии, Африки и Австралии. Наибольшее значение имеют обыкновенные перепела, которые принадлежат к популярным охотничьим птицам; немой перепел одомашнен, и его разводят на птицефабриках для получения яиц и мяса. Кроме того, этих птиц содержат в клетках любители. Домашняя форма немого перепела - японский перепел, он может быть использован для разведения на дичи фермах с целью повышения рентабельности хозяйства и круглогодичного использования оборудования. С декоративными целями разводят также перепелов арлекинского, расписного, или китайского, и индийского. 3 Куропатки, кеклики, улары. Наиболее многочисленная группа в ней насчитывается более 30 родов. Эти птицы населяют как низменные, так и горные местности Европы и Азии. Все виды куропаток относятся к охотничьим, особенно серые куропатки и кеклики. За последние десятилетия их численность уменьшилась более чем в два раза. В западной Европе, Венгрии серых куропаток и кекликов разводят на дичифермах как для выпуска в природу, так и для гастрономических целей.
![]() | 978 63 62 |