телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы
Молочный гриб необходим в каждом доме как источник здоровья и красоты

РАСПРОДАЖАВсё для дома -5% Товары для дачи, сада и огорода -5% Сувениры -5%

все разделыраздел:Историяподраздел:Историческая личность

Давид Гильберт

найти похожие
найти еще

Крючки с поводками Mikado SSH Fudo "SB Chinu", №4BN, поводок 0,22 мм.
Качественные Японские крючки с лопаткой. Крючки с поводками – готовы к ловле. Высшего качества, исключительно острые японские крючки,
58 руб
Раздел: Размер от №1 до №10
Брелок LED "Лампочка" классическая.
Брелок работает в двух автоматических режимах и горит в разных цветовых гаммах. Материал: металл, акрил. Для работы нужны 3 батарейки
131 руб
Раздел: Металлические брелоки
Карабин, 6x60 мм.
Размеры: 6x60 мм. Материал: металл. Упаковка: блистер.
42 руб
Раздел: Карабины для ошейников и поводков
Зато каждую догадку можно будет проверить " медленно, но надежно. Гильберт сознавал, что эта его надежда является гипотезой и требует тщательной проверки. В качестве контрольного примера он выбрал общую теорию множеств, а в ней " знаменитую континуум-гипотезу Кантора. Существует ли на отрезке несчетное множество мощности меньшей, чем сам отрезок" Безуспешно пытаясь построить такое множество, Георг Кантор довел себя до психического расстройства. Напротив, Гильберт попробовал доказать НЕДОКАЗУЕМОСТЬ континуум " гипотезы " и это ему удалось. Но когда он попытался доказать ее НЕОПРОВЕРЖИМОСТЬ, то потерпел неудачу. Успех в этом деле пришел лишь в 1963 году к американцу Полю Коэну и чеху Карелу Вопенке. Такой результат немало порадовал бы Гильберта: он доказывает, что континуум-гипотеза является одной из необходимых аксиом теории множеств. Но при жизни Гильберта постигло в этой сфере тяжкое разочарование, В 1931 году молодой австриец Курт Гедель доказал, что утверждения вроде континуум-гипотезы (не доказуемые и не опровержимые) найдутся в ЛЮБОЙ системе аксиом. Были они в системе Евклида: таков "пятый постулат" о параллельных прямых. Есть они в теории множеств: такова "аксиома выбора", такова же континуум-гипотеза. Есть они даже в арифметике " и впредь будут во всякой формальной модели любой из областей математики! Значит, надежда Гильберта на полную формализацию каждой области математики была ошибкой" Да, таков приговор природы; обжалованию он не подлежит. Но его можно воспринять и с оптимизмом: из теоремы Геделя следует, что развитие любой области науки никогда не прекратится! Правда, для этого придется регулярно изобретать новые определения и аксиомы, вытекающие из существа дела. На это способен только человеческий мозг, но не компьютер. Гильберт это знал по опыту; поэтому он не только огорчался, но и радовался поразительному открытию Геделя. Приятно, когда природа оказывается еще богаче, чем ты надеялся! Но если изобретение универсальной системы аксиом не может стать единственным или главным знаменем для развивающейся математики, то, что нужно добавить к этому знамени" Ясно, что: решение новых задач! Эта работа приносит ученому все новые радости, побуждает его к новым усилиям. Значит, в любой момент времени все математики должны иметь ясное представление о важнейших не решенных проблемах своей науки. Долг сильнейших математиков " не только решать такие задачи, но и ставить новые проблемы на смену решенным. Гильберт вступил на этот путь в 38 лет " в 1900 году, когда он сделал на Парижском математическом конгрессе доклад "Математические проблемы". С тех пор прошел целый век " и видно, что ни один математик не превзошел Гильберта своим влиянием на развитие науки. Какие же задачи Гильберт считал тогда главными для математики" Во-первых, обоснование ее новых, бурно развивающихся ветвей: теории множеств, математической логики, теории чисел, алгебраической геометрии, функционального анализа. В каждой их этих областей Гильберт выделил одну-две задачи, " наиболее просто формулируемые и трудные для решения. Таковы континуум-гипотеза и непротиворечивость арифметики, распределение простых чисел и трансцендентность числа е., классификация непрерывных групп и разрешимость диофантовых уравнений.

(1862-1943) Его называют последним всесторонним математиком и самым замечательным учителем математиков 20 века. Но биография у Гильберта была самая обыкновенная. Он родился в столице Пруссии " Кенигсберге незадолго до того, как Пруссия под руководством Бисмарка объединила все немецкие государства в новую (вторую) Германскую империю. Гильберт пережил взлет этой державы, а затем " ее распад в конце первой Мировой войны. Потом возникла недолговечная Веймарская республика; за нею последовали Гитлеровская империя и вторая Мировая война. Этих потрясений хватило бы на много жизней; но до поры, до времени Гильберт ухитрялся избегать участия в политике и войнах. Вундеркиндом он не был, а был типичным "классиком". То есть, Гильберт поочередно старался понять каждую область математики на всю ее глубину и решить в ней те задачи, которые его интересовали. Когда полет фантазии и творческий взрыв прекращались, Гильберт оставлял это поле деятельности своим ученикам. Но оставлял в полном порядке, написав хороший учебник для всех последователей и прочтя соответствующий курс для студентов. Бывало и наоборот: Гильберт объявлял на следующий учебный год спецкурс по новой для себя области математики. За лето он входил в курс дела и дальше изучал новую науку, обучая ей студентов " как бы ведя группу альпинистов на траверс незнакомого хребта. Попасть в состав такой штурмовой группы считалось большой честью и очень трудным испытанием. Гильберт был заботлив со всеми учениками, в которых он замечал "искру Божью". Но если она угасала, то он вежливо советовал им сменить род деятельности, " например, ограничиться преподаванием математики. Бывали и другие варианты: ученики Гильберта становились физиками, инженерами и даже литераторами. Об одном бывшем питомце Гильберт отозвался так: "Да, он стал поэтом " и правильно сделал. Для математики ему не хватало фантазии!" О том, что кому-то может не хватить трудолюбия, Гильберт не говорил; бездельников он не считал полноценными людьми. Еще в Кенигсберге Гильберт ощутил себя лидером среди сверстников в науке, хотя зазнайство было ему чуждо. Стать главою математической школы " такая мечта пришла на ум сама собой. Но где свить свое гнездо" Этот вопрос потребовал долгих раздумий. В Кенигсберге профессия математика была не в почете; в столичном Берлине слишком большую роль играли военные и чиновники. Зато тихий Геттинген, осененный славными именами Гаусса и Римана, оставался местом паломничества немецкой математической молодежи. В 1895 году Гильберт переехал туда и успешно проработал до 1933 года " пока к власти не пришел Гитлер. Подобно Гауссу, Гильберт начал свои исследования с алгебры. 19 век преобразил эту науку; пришла пора навести в ней порядок, и Гильберт начал реформу с теории чисел. Поводом стал заказ от Математического общества: сделать обзорный доклад о современном состоянии теории чисел и о перспективах ее развития. С этим заданием Гильберт справился бы за полгода, но увлекся этой работой на добрых 5 лет. В итоге "Доклад о числах" превратился в учебник объемом в 400 страниц, где отразились все яркие новинки. Например, в целых кольцах разложение на простые множители бывает неоднозначным: из-за этого Эрнст Куммер не сумел завершить доказательство Большой теоремы Ферма.

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)

Эйнштейн в 1918 году одной фразой охарактеризовал свои отношения с основателем квантовой физики: "Жить рядом с Планком - это радость". Есть ученые, выдвинувшие много гениальных идей и совершившие множество великих открытий. Альберт Эйнштейн и Давид Гильберт принадлежат к их числу. Максу Планку, многие работы которого были ценным вкладом в науку, удалось за свою долгую жизнь исследователя совершить лишь единственное эпохальное открытие: открытие элементарного кванта действия. Но оно оказалось столь фундаментальным и имело такие важные последствия для всего естествознания, что его имя стало в ряд с величайшими именами в истории науки. "Пока существует естествознание, - сказал Макс фон Лауэ, - оно будет заботиться о том, чтобы имя Планка не было забыто. Мы гордимся, что он был немцем!" Альберт Эйнштейн Создание квантового учения о свете и теории относительности Берлинский университет, основанный в 1810 году Вильгельмом фон Гумбольдтом, обладает необычайно богатыми научными традициями. В числе его первых профессоров были Фихте, Шлейермахер и Гегель

скачать реферат ТТМС /моделирование систем/

Глава Математическое моделирование системных элементов Выдающийся итальянский физик и астроном, один из основателей точного естес- твознания, Галилео Галилей (1564 - 1642гг.) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической фи- лософии Иммануил Кант (1742 - 1804гг.) утверждал, что "Во всякой науке столько ис- тины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практи- чески уже в наше время, немецкий математик и логик Давид Гильберт (1862 - 1943гг.) констатировал: "Математика - основа всего точного естествознания". Приведенные высказывания великих ученых, без дополнительных комментариев, дают полное представление о роли и значении математики как в научно-теоретической, так и предметно-практической деятельности специалистов. 1.1. Три этапа математизации знаний Современная методология науки выделяет три этапа математизации знаний: ма- тематическая обработка эмпирических (экспериментальных) данных, моделирование и относительно полные математические теории.

Калькулятор настольный "SDC-450NBLCFS", синий.
8 разрядов. Двойное питание. Цвет корпуса - синий. Размер - 120х87 мм.
533 руб
Раздел: Калькуляторы
Мульти-плеер "Ладушки".
В этом мультиплеере 20 потешек и песенок для самых маленьких: 1. «Кошкин дом» 2. «Два весёлых гуся» 3. «Топ-топ, топотушки» 4. «Пошёл
344 руб
Раздел: Смартфоны, мультиплееры
Микрофон для ноутбука Hama H-57152, черный.
Идеален для интернет-телефонии (VoIP) или распознавания голоса на ноутбуке. Гибкая ножка микрофона (17 см) для оптимальной
417 руб
Раздел: Прочее
 Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)

Оба физика работали в Физическом институте Берлинского университета. Джеймс Франк, родившийся в Гамбурге 26 августа 1882 года в семье состоятельного коммерсанта, с 1903 года, после двух семестров в Гейдельберге, во время которых он занимался преимущественно физикой и химией, а также геологией, учился в Берлине у Эмиля Фишера, Макса Планка и Эмиля Варбурга. В 1906 году он получил степень доктора, защитив диссертацию по проблеме разрежения газа. Затем он стал ассистентом Генриха Рубенса. Весной 1911 года Франк получил право преподавания физики. В своей первой лекции он говорил о тепловом излучении. В это же время получил докторскую степень Густав Герц, сын гамбургского адвоката и племянник первооткрывателя электромагнитных волн. Проведя несколько семестров в Гёттингене, где он слушал Давида Гильберта и Макса Абрахама, и в Мюнхене у Рентгена и Зоммерфельда, Герц продолжал свое образование с 1908 года в Берлине у Планка и Рубенса. После получения степени доктора "молодой физик, одаренный в теоретическом отношении, полный идей и при этом чрезвычайно добросовестный", по отзыву Планка, стал ассистентом Рубенса в Физическом институте университета

скачать реферат История доказательства Великой теоремы Ферма

Ландау был вынужден то и дело прерывать свои собственные исследования, поскольку ему нужно было разбирать десятки ошибочных доказательств, поступавших к нему на стол каждый месяц. Чтобы справиться с ситуацией, профессор Ландау изобрел изящный метод, позволивший избавиться от докучливой работы. Профессор попросил напечатать несколько сотен карточек, на которых значилось: Уважаемый(ая) . . . . . . . . Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. . в строке . . Из-за нее все доказательство утрачивает силу. Профессор Э. М. Ландау Каждое из полученных доказательств вместе с отпечатанной карточкой Ландау вручал одному из своих студентов и просил его заполнить пробелы. Доказательства продолжали поступать непрерывным потоком в течение нескольких лет. Некоторые из величайших фигур XX века — в том числе Бертран Рассел, Давид Гильберт и Курт Гёдель пытались разобраться в наиболее глубоких свойствах чисел, чтобы постичь их истинное значение и установить, какие проблемы теории чисел разрешимы, а какие — что гораздо важнее — неразрешимы.

 Сотворение мира или эволюция?

Немецкий математик, Давид Гильберт (1862 – 1943), один из величайших логиков всех времен и народов, в свое время шутил, заявляя, что хотя мы используем такие слова, как точка, прямая, плоскость, и т д., вполне можно было бы говорить о пивных кружках, стульях и любых других предметах, лишь бы они удовлетворяли требованиям вводимых нами аксиом. Откуда, в таком случае, мы знаем, как пользоваться исходными категориями? Ответ дают сами аксиомы, именно они (и, добавим, вся совокупность доказываемых с их помощью теорем) содержат в себе все то, что можно утверждать об исходных понятиях. Так, если точка и прямая формально не определены, но заданы аксиомы о том, что через две точки можно провести прямую и притом только одну, а также о том, что три точки задают плоскость и притом только одну, то именно совокупность этих аксиом создает тот строгий контекст, который может использоваться нами при выводе новых утверждений о точке, прямой и плоскости[57]. Прикосновенность этого принципа именно к высшей логике следует из того, что даже математиками он был осознан только к концу XIX столетия, несмотря на то, что о нем говорили и Аристотель, и Декарт, и, как уже сказано, Гегель

скачать реферат Роль воображения в игровой деятельности дошкольников

С его помощью можно полететь на Луну, отправиться в путешествие по древнему миру и представить себе лицо далекого друга. Великий немецкий математик Давид Гильберт на вопрос одного из своих учеников ответил: «Он стал поэтом. Для математика у него не хватило воображения». Именно благодаря воображению, в науке совершены великие революционные открытия, такие, например, как создание периодической системы элементов Д. И. Менделеева и теории относительности Эйнштейна. Но воображение, как любая психологическая функция ребенка, требует педагогической заботы, если мы хотим, чтобы оно развивалось. Школьное обучение требует уже достаточно сформированного уровня воображения. К первому классу ребенок должен уметь ориентироваться в ситуациях, в которых происходят различные преобразования предметов, образов, знаков, и быть готовым к предвосхищению возможных изменений. Наиболее успешно становление воображения происходит в игре, а также на занятиях рисованием, особенно, когда ребенок начинает «сочинять», «воображать», сочетая реальное с воображением.

скачать реферат Формальная логика и мышление, вывод и рассуждение

Исходя из этих мыслей, Б.Рассел, Уайтхед, Кутюра и др. пытались построить всю математику на базе понятий логики. Это была линия логизма. Но затем выяснилось, что это невозможно. Существенную роль в этом сыграл главный представитель интуитивизма Анри Пуанкаре, но решающий вывод был сделан Давидом Гильбертом: логика не может быть основанием математики. И та, и другая должны быть представлены в виде своих особых исчислений и должны употребляться вместе, наравне друг с другом. Таким образом, был уничтожен второй разделительный рубеж между логикой и математикой. Фактически, уже получилось – хотя осознание этого отставало, – что математическая логика есть не что иное, как несколько частных разделов самой математики. Можно считать, что история закончила один из своих дурацких циклов и в конце концов разъяснила нам действительное положение вещей. Правда, это разъяснение пришло несколько поздновато – для всего цикла понадобилось более 2000 лет. Но история логики имела и другую сторону, принципиально отличную от первой. Ведь она появилась и на первых этапах развивалась не как формальная логика, а как "органон", т.е. теория познания и методология науки, как теория мышления.

скачать реферат Маркс и наука

Созданная в начале ХХ столетия Георгом Кантором теория множеств по его замыслу должна была составить фундамент всей математической науки. Математика стала более строгой и в большей степени стала удовлетворять принципу научной принципиальности. Всему миру известна крылатая фраза Давида Гильберта: “Никто не может изгнать нас из рая, который создал нам Кантор”. Но этот “рай” оказался полон противоречий и парадоксов. Отбросить эту теорию оказалось совершенно невозможно, поскольку она теснейшим образом связана с основами математики. Ее проблемы – это проблемы всей математики и всего мироздания. Не без огорчения Гильберт пишет: “Подумайте: в математике – этом образце достоверности и истинности – образование понятий и ход умозаключений, как их всякий изучает, преподает и применяет, приводят к нелепостям. Где же искать надежность и истинность, если даже само математическое мышление дает осечку !”. Это было сказано в 1925 году. На протяжении десятков лет после создания теории множеств математики вели борьбу с парадоксами не сознавая, что противоречия в рассуждениях отражают необходимые противоречия бытия.

скачать реферат Макс Борн

Он был старшим из двух детей. Максу было четыре года, когда умерла его мать. Четыре года спустя его отец женился на Берте Липштейн, которая родила ему сына. Поскольку его семья была связана с ведущими интеллектуальными и артистическими кругами Бреслау, Борн рос в атмосфере, благоприятной для его развития. Начальное образование он получил в гимназии кайзера Вильгельма в Бреслау. После смерти своего отца (но по его желанию) в 1901 году Макс Борн поступил на курсы в Университете Бреслау, хотя раньше собирался стать инженером. Там он изучал многие предметы, однако вскоре увлекся математикой и физикой. Два летних семестра он провел в университетах Гейдельберга и Цюриха. В 1904 году он поступил в Геттингенский университет, где занимался под руководством известных математиков – Давида Гильберта и Феликса Клейна, а также Германа Минковского. Гильберт, оценив интеллектуальные способности Борна, сделал его своим ассистентом в 1905 году. Макс Борн, кроме того, изучал в Геттингене астрономию. Ко времени получения степени доктора в 1907 году за диссертацию по теории устойчивости упругих тел его интересы переместились в область электродинамики и теории относительности.

Грызунок на прищепке "Машинка".
Грызунок сделан из безопасного пищевого силикона, он выполняет роль прорезывателя для зубов. Бусины грызунка достаточно мягкие и очень
390 руб
Раздел: Силиконовые
Мольберт "Доска комбинированная - 12".
Мольберт "Доска комбинированная - 12" - это двухсторонняя доска. Одна сторона мольберта предназначена для рисования мелом,
1596 руб
Раздел: Доски комбинированные
Карандаши цветные "Jumbo", трехгранные, 12 цветов + точилка.
Мягкие, но при этом очень прочные карандаши, легко затачиваются и не крошатся. Насыщенные штрихи на бумаге. Не токсичны!. В комплекте: 12
308 руб
Раздел: 7-12 цветов
скачать реферат Моделирование системных элементов

Математическое Выдающийся итальянский физик и астроном, один из основателей точного естествознания, Галилео Галилей (1564 - 1642гг.) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической философии Иммануил Кант (1742 - 1804гг.) утверждал, что "Во всякой науке столько истины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практически уже в наше время, немецкий математик и логик Давид Гильберт (1862 - 1943гг.) констатировал: "Математика - основа всего точного естествознания". Приведенные высказывания великих ученых, без дополнительных комментариев, дают полное представление о роли и значении математики как в научно-теоретической, так и предметно-практической деятельности специалистов. 1.1. Три этапа математизации знаний Современная методология науки выделяет три этапа математизации знаний: математическая обработка эмпирических (экспериментальных) данных, моделирование и относительно полные математические теории. Первый этап - это математическая, чаще всего именно количественная обработка эмпирических (экспериментальных) данных. Это этап выявления и выделения чисто феноменологических функциональных взаимосвязей (корреляций) между входными сигналами (входами ) и выходными реакциями (откликами ) на уровне целостного объекта (явления, процесса), которые наблюдают в экспериментах с объектами-оригиналами .

скачать реферат Математическая кунсткамера /кое-что из истории геометрии/

Именно это свойство и принял Урысон за новое определение размерности. Фигура называется имеющей размерность , если ее можно разбить на сколь угодно малые замкнутые части так, чтобы ни одна точка не принадлежала 2 различным частям, но при Рис. 33 Рис. 34 любом достаточно мелком разбиении найдутся точки, принадлежащие 1 различным частям. Используя это определение размерности, Урысон доказал что размерность квадрата равна 2, куба – 3 и т. д. А потом он показал, что это определение равносильно первоначально данному. Построенная Урысоном теория размерности произвела глубокое впечатление на весь математический мир. Об этом ярко говорит следующий эпизод. Во время заграничной командировки Урысон сделал доклад о своих результатах в Геттинге. До прихода нацистов к власти Геттингский университет был одним из основных математических центров. После доклада руководитель геттингенской математической школы знаменитый Давид Гильберт сказал, что эти результаты надо опубликовать в журнале «Ma hema ische A ale » - одном из главных математических журналов того времени.

скачать реферат Дзета-функция Римана

Далее активно занимался изучением дзета-функции немецкий математик Бернгард Риман. В честь него она получила своё название, так как он опубликовал несколько исключительно выдающихся работ, посвящённых этой функции. В них он распространил дзета-функцию на область комплексных чисел, нашёл её аналитическое продолжение, исследовал количество простых чисел, меньших заданного числа, дал точную формулу для нахождения этого числа с участием функции  и высказал свою гипотезу о нулях дзета-функции, над доказательством или опровержением которой безрезультатно бьются лучшие умы человечества уже почти 150 лет.  Научная общественность считала и считает решение этой проблемы одной из приоритетных задач. Так Давид Гильберт, выступавший на Международной Парижской математической конференции 1900 году с подведением итогов развития науки и рассмотрением планов на будущее, включил гипотезу Римана в список 23 проблем, подлежащих решению в новом столетии и способных продвинуть науку далеко вперёд. А на рубеже веков, в 2000 году американский he Clay Ma hema ics I s i u e назвал семь задач, за решение каждой из которых будет выплачен 1 миллион долларов. В их число также попала гипотеза Римана.

скачать реферат Случайность в арифметике

Случайность в арифметике Невозможно доказать, конечное или бесконечное число решений имеет каждое уравнение из семейства алгебраических уравнений: ответ варьирует случайным образом, и, следовательно, не может быть найден с помощью математического рассуждения Грегори Дж.Чейтин Что может быть бесспорнее того факта, что 2 плюс 2 равняется 4? Со времён древних греков математики считали, что более несомненной вещи, чем доказанная теорема, не сыскать. Действительно, математические утверждения, истинность которых может быть доказана, часто считались более надёжным основанием для системы мышления, чем любой моральный или даже физический принцип. Немецкий философ и математик XVIIвека Готфрид Вильгельм Лейбниц считал возможным создать «исчисление» рассуждений, которое когда-нибудь позволит улаживать все споры с помощью слов: «Давайте вычислим, господа!». К началу нашего столетия прогресс в разработке символической логики дал основание немецкому математику Давиду Гильберту заявить, что все математические вопросы в принципе разрешимы, и провозгласить окончательную кодификацию методов математического рассуждения.

скачать реферат Теория Рамсея

Что касается философии, то его вдохновляли идеи Джорджа И.Мура, Людвига Витгенштейна и Бертрана Рассела. Мур писал: «Он необычайно ясно мыслил: никто не мог легче его избежать тех логических погрешностей, от которых несвободны даже лучшие философы». Затем произошла трагедия: в 1930году Рамсей заболел и в 26лет умер от осложнений после операции. Есть некая ирония в том, каким образом за два года до смерти Рамсей вывел теорию, ныне называемую его именем. Он пришёл к основной идее, пытаясь доказать тезис, выдвинутый Расселом и Альфредом Нортом Уайтхедом в их основополагающем труде «Pri cipia Ma hema ica» (Основы математики). Они предположили, что все математические истины могут быть выведены из ограниченного набора аксиом. Развивая эту идею, немецкий математик Давид Гильберт предположил, что должна существовать процедура, позволяющая решить, следует ли то или иное утверждение из данного набора аксиом или нет. Рамсей показал, что в некотором частном случае такая процедура принятия решения существует. (Спустя несколько лет Курт Гёдель и его последователи, англичанин Алан Тьюринг и другие, исчерпывающим образом доказали, что в общем случае такой процедуры не существует.) Рамсей доказал свою теорему в качестве первого шага, пытаясь продемонстрировать справедливость тезиса Рассела в специальном случае.

Машина-каталка (арт. 3510).
Автомобиль имеет оригинальный аутентичный дизайн, он безопасен и эргономичен. Малыш сможет, как папа, поднять крышку капота и заглянуть в
1463 руб
Раздел: Каталки
Настольная игра "Хамелеон" (2-е издание).
Быстрая игра на внимание и реакцию для детей и их родителей. Цель игры — собрать набор карт с определенным цветом, предметом, цифрой.
390 руб
Раздел: Игры в дорогу
Набор фломастеров для керамики, 6 цветов, 6 штук.
Толщина линии: 1-4 мм.
469 руб
Раздел: До 6 цветов
скачать реферат Математика и проблема адекватного описания реальности

Лишь при этом условии "структура описания" оказывается изоморфной "структуре Мира". 6. Операция "умножения" и понятие "произведения", строго говоря, не имеют смысла, так как им в Мире ничего не соответствует. Но формально ими можно пользоваться, если они могут быть интерпретированы как воздействие операторов, а для этого они неизбежно должны обладать свойством ассоциативности. 7. Таким образом, для построения системы "истинной" математики открываются в принципе два равноправных пути: выявление элементарных операторов и требование ассоциативности всех используемых операций "умножения" (оба пути приводят к одним и тем же результатам). 8. От структур, получающихся при адекватном описании реальности, можно ожидать высокой степени простоты и симметрии, удовлетворяющих нашему эстетическому чувству, что дает мощный эвристический критерий для суждения об их истинности. В XX веке в математике воцарилось почти безраздельное господство мощного и плодотворного аксиоматического метода, в немалой степени обязанного своей победой подкупающему стилю мышления и блестящим результатам Давида Гильберта.

скачать реферат Дзета-функция Римана

Далее активно занимался изучением дзета-функции немецкий математик Бернгард Риман. В честь него она получила своё название, так как он опубликовал несколько исключительно выдающихся работ, посвящённых этой функции. В них он распространил дзета-функцию на область комплексных чисел, нашёл её аналитическое продолжение, исследовал количество простых чисел, меньших заданного числа, дал точную формулу для нахождения этого числа с участием функции и высказал свою гипотезу о нулях дзета-функции, над доказательством или опровержением которой безрезультатно бьются лучшие умы человечества уже почти 150 лет. Научная общественность считала и считает решение этой проблемы одной из приоритетных задач. Так Давид Гильберт, выступавший на Международной Парижской математической конференции 1900 году с подведением итогов развития науки и рассмотрением планов на будущее, включил гипотезу Римана в список 23 проблем, подлежащих решению в новом столетии и способных продвинуть науку далеко вперёд. А на рубеже веков, в 2000 году американский he Clay Ma hema ics I s i u e назвал семь задач, за решение каждой из которых будет выплачен 1 миллион долларов. В их число также попала гипотеза Римана.

скачать реферат Эволюция концепции доказательства

Давид Гильберт Гильберт доказал, что евклидова геометрия непротиворечива, если непротиворечива система вещественных чисел. Осталось совсем немного: доказать непротиворечивость арифметики. Теорема Геделя Курт Гедель (1906 - 1978) в 1931 году в работе "О формально неразрешимых проблемах "Pri cipia Ma hema ica" и родственных систем" доказал теорему о том, что любая непротиворечивая аксиоматическая система, включающая аксиомы арифметики натуральных чисел, обладает свойством неполноты: для нее можно указать конкретное утверждение А, для которого в этой системе нельзя доказать ни А, ни его отрицание. Это утверждение находится за пределами системы! И для неполноты любой математической теории достаточно включения в нее простейшего объекта математики - натурального числа. Гедель доказал полноту исчисления предикатов первой ступени. В другой теореме Гедель доказывает, что в качестве А можно взять утверждение о непротиворечивости арифметики. Непротиворечивость теории не может быть доказана средствами самой теории. Теоремы инженера Геделя развеяли мечты математика Гильберта. "Роль пресловутых "оснований" сравнима с той функцией, которую в физических теориях выполняют поясняющие что-либо гипотезы Так называемые логические или теоретико-множественные основания теории чисел или любой другой вполне сформировавшейся математической теории по существу объясняют, а не обосновывают их, так же, как в физике, где истинное предназначение аксиом состоит в объяснении явлений, описываемых физическими теоремами, а не в обосновании этих теорем." Эпистемологические следствия Одна непротиворечивая теория не может полностью описать реальность; всегда остаются факты или аспекты, которые требуют обращения к другой теории, возможно, несовместимой с первой.

скачать реферат С чем идет современная логика в XXI век?

Свою задачу они видели в том, чтобы создать новый искусственный язык, с помощью которого можно было бы преодолеть многие "недостатки" естественного языка. В математике главным идеологом этого направления стал выдающийся немецкий математик Давид Гильберт, предложивший в начале XX столетия свою программу обоснования этой науки, в которой конкретные "интуитивные" математические понятия (числа, точки, линии, фигуры, множества и т.д.) заменялись некими абстрактными символами, связанными друг с другом чисто формальными отношениями. Для многих математиков того времени такой переход не представлялся достаточно обоснованным (их точку зрения выразил А. Пуанкаре в своих работах по методологии науки ). Но к концу XX столетия точка зрения Гильберта оказалась доминирующей в некоторых разделах математики, в первую очередь в универсальной алгебре и в математической логике. Во многом эта точка зрения совпала с основной парадигмой логического позитивизма. В то же время у некоторых современных математиков отношение к программе Гильберта явно негативное. Академик В.И. Арнольд в статье под названием "Выживет ли современная математика?" назвал формализованный аксиоматический метод, развившийся в русле программы Д.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.