телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы
путь к просветлению

РАСПРОДАЖАТовары для дачи, сада и огорода -30% Игры. Игрушки -30% Книги -30%

все разделыраздел:Компьютеры, Программированиеподраздел:Программное обеспечение

История применения универсальных цифровых вычислительных машин в ядерной и космической программах СССР

найти похожие
найти еще

Брелок LED "Лампочка" классическая.
Брелок работает в двух автоматических режимах и горит в разных цветовых гаммах. Материал: металл, акрил. Для работы нужны 3 батарейки
131 руб
Раздел: Металлические брелоки
Ручка "Помада".
Шариковая ручка в виде тюбика помады. Расцветка корпуса в ассортименте, без возможности выбора!
25 руб
Раздел: Оригинальные ручки
Ручка "Шприц", желтая.
Необычная ручка в виде шприца. Состоит из пластикового корпуса с нанесением мерной шкалы. Внутри находится жидкость желтого цвета,
31 руб
Раздел: Оригинальные ручки
История применения универсальных цифровых вычислительных машин в ядерной и космической программах СССР Е. Н. Филинов Решение задач военно-технической области с самого начала было одной из главных областей применения компьютеров. Постановка, алгоритмизация и программирование этих задач для универсальных машин стали предметом исследований и разработок ведущих школ прикладной (вычислительной) математики в СССР. Таким же образом проблемы создания и применения компьютеров решались и в США. Поэтому большая часть работ в этой области на заре цифровой вычислительной техники и в СССР, и в США, велись тогда под грифом "секретно". Даже корпорация IBM, исторически сформировавшаяся как фирма-поставщик средств вычислительной техники для деловой сферы, связанной с задачами обработки данных, сочла необходимым свой первый проект компьютера IBM 701 назвать "Defe se Calcula or" ("оборонный калькулятор"), чтобы привлечь к нему интерес военных заказчиков. Настоящая статья посвящена истории применения отечественных универсальных цифровых вычислительных машин для решения задач ядерной и космической программ СССР, направленных на создание ракетно-ядерного щита страны и достижение военного паритета с США. I. Советская ядерная программа Основоположником советской ядерной программы следует считать академика В. И. Вернадского. Он еще в 1910 г., понимая как никто другой глубинный смысл радиоактивности, открытой Беккерелем, представил конкретную программу геологического поиска урановых руд и овладения энергией атомного распада. В 1922 г. в Петрограде на открытии Радиевого института, директором которого В. И. Вернадский был до 1939 г., он говорил: "Мы подходим к великому перевороту в жизни человечества, с которым не может сравняться все им пережитое. Недалеко время, когда человек получит в свои руки атомную энергию - такой источник, который дает ему возможность строить свою жизнь, как он захочет. Сумеет ли человек воспользоваться этой силой, направить ее на добро, а не на самоуничтожение? Дорос ли он до умения использовать ту силу, которую неизбежно должна дать ему наука?". Именно в институте В. И. Вернадского проявилось дарование еще молодого тогда И. В. Курчатова, будущего руководителя советской ядерной программы . В 1943 г. незадолго до начала Сталинградской битвы И. В. Сталин принял на даче в Кунцево двух крупнейших ученых В. И. Вернадского и А. Ф. Иоффе. Они убедили вождя в необходимости и реальной возможности создания атомного оружия. Конечно, у Сталина и до этого были донесения советских разведчиков об американском и английском атомных проектах, попытках создать "оружие возмездия" в Третьем рейхе, были письма ученых АН СССР, в том числе Г. Н. Флерова. Но убежденность в необходимости поставить эту проблему на уровень важнейшей государственной задачи пришла в результате этой встречи. За ней последовало решение Государственного комитета обороны (ГКО). Начало советской ядерной программы относится к 1943 г., когда по решению ГКО было создано первое в стране научно-исследовательское учреждение, призванное заниматься атомной проблемой, - Лаборатория измерительных приборов № 2 АН СССР (ЛИПАН - ныне Российский научный центр "Курчатовский институт").

Ракету, подобную по назначению немецкой V-2, создало КБ С. П. Королева (ныне НПО "Энергия"), сотрудники которого Б. Е. Черток и В. П. Мишин были командированы по окончании войны в Германию, чтобы достать трофейные образцы сохранившихся деталей жидкостных реактивных двигателей V-2 и системы автоматического управления полетом ракеты. Ракету, подобную по назначению немецкой V-1, создало КБ В. Н. Челомея (ныне НПО машиностроения г. Реутов Московской области), в результате Советская Армия была вооружена самолетами-снарядами наиболее передового по тому времени уровня. За этими первыми ракетами в 70-80-х годах последовала серия военных ракет-носителей. Основными участниками создания ракетно-космических комплексов военного назначения в советской космической программе были: Южный машиностроительный завод, г. Днепропетровск; КБ "Южное" им. М. К. Янгеля; НПО машиностроения; НПО "Хартрон". Днепропетровским южным машиностроительным заводом (ЮМЗ) Минобщемаша СССР (генеральный директор ЮМЗ с 1986 г. Л. Д. Кучма) и КБ "Южное" им. М. К. Янгеля были созданы: ракетный комплекс "Зенит"; ракетный комплекс 15А18М, известный на западе как СС-18 "Сатана". СС-18 был принят на вооружение в 1988 г. Он составил главную мощь ракетных войск стратегического назначения СССР и поставил последнюю точку в истории "холодной войны", подтолкнув противоборствующие стороны к подписанию договора об ограничении стратегических вооружений. Главным конструктором ракетных комплексов в КБ "Южное" в 1960-1986 гг. был В. Г. Сергеев, дважды Герой Социалистического Труда, лауреат Ленинской премии и Государственных премий СССР и УССР, премии М. К. Янгеля. Системы управления для ракет-носителей разрабатывало НПО "Хартрон", г. Харьков (генеральный директор В. Г. Сергеев). Главным конструктором бортовых компьютеров для ракетных комплексов был А. И. Кривоносов. Ракетный комплекс 15А30 был создан КБ машиностроения, г. Реутов, Московской области. Генеральный конструктор - академик В. Н. Челомей. Система управления ракетой была разработана НПО "Хартрон". Для отработки программно-математического обеспечения так называемого "электронного пуска" ракеты в НПО "Хартрон" использовался инструментальный комплекс на базе БЭСМ-6, который моделировал полет ракеты и реакцию системы ее управления на воздействие основных возмущающих факторов и обеспечивал эффективный и полный контроль полетных заданий. За создание технологии "Электронного пуска" коллектив разработчиков - Я. Е. Айзенберг, Б. М. Конорев, С. С. Корума, И. В. Вельбицкий и др. - был удостоен Государственной премии УССР. Системы управления, разработанные НПО "Хартрон", поставлялись ЮМЗ. III. Достижение стратегического оборонного паритета между СССР и США В противостоянии США и СССР в период "холодной войны" переломным оказался 1949 год. 29 августа 1949 г. была испытана первая отечественная атомная бомба. В США первая атомная бомба была испытана 16 июля 1945 г., а в августе 1945 г. США подвергли атомным бомбардировкам японские города Хиросиму и Нагасаки. Эти бомбардировки не имели никакого значения для непосредственных результатов войны с Японией. Они были только демонстрацией силы со стороны американской военщины, адресованной СССР, тогдашнему союзнику США и потенциальному противнику в преддверии "холодной войны".

За выполнение этой работы М. А. Лаврентьев и все трое упомянутых участников были удостоены Ленинской премии. В 1961 г. на Новой Земле было произведено атмосферное испытание самой мощной в истории термоядерной бомбы мощностью 58 мегатонн тротилового эквивалента, а в 1962 г. СССР произвел на Новой Земле свое последнее воздушное испытание ядерного оружия. После этого основным методом испытаний ядерного оружия стали математические модели или подземные ядерные взрывы. В 1970 г. на вооружение Советской Армии были поставлены первые межконтинентальные ракеты с разделяющимися ядерными боевыми головками. Проблемы "миниатюризации" ядерного оружия решались во ВНИИ технической физики (Снежинск) под руководством К. Н. Щелкина. Именно они легли в основу разделяющихся головных частей ракетного вооружения Советской Армии в 70-х годах. Как писал академик А. Д. Сахаров в книге "Воспоминания", "большое" изделие (мощностью 100 мегатонн тротилового эквивалента) в военном смысле - дело пустое, так как для него не было подходящей ракеты-носителя, а бомбардировщик, несущий это изделие, может быть легко сбит. Идея для военных - торпеда, запускаемая с подводной лодки". Такие морские ракеты, включая ракеты с разделяющимися головками, разрабатывало КБ академика В. П. Макеева в г. Миасс. В 1979-1987 гг. на вооружение Советской Армии поступило новое поколение стратегических ракетных комплексов стационарного и подвижного (в том числе на подводных лодках) базирования. В течение некоторого времени в российских средствах массовой информации (в газетах и на телевидении) муссировался миф о том, что советская атомная бомба была копией американской, чрезмерно преувеличивавший роль научно-технической разведки в решении ядерной проблемы. В действительности это было не так - "ученые и разведчики делали общее дело" . От американских физиков из атомной лаборатории в Лос-Аламосе, действовавших по убеждению, а не за плату, Клауса Фукса и Теодора Холла (кличка по данным разведки "Персей") советские разведчики получили не чертежи атомной бомбы (по которым И.В. Курчатов якобы сделал нашу бомбу), а схему устройства ядерного заряда с указанием его размеров и используемых в нем материалов . Конечно, эта информация вместе с ответами на вопросы, которые систематически ставил И. В. Курчатов перед научно-технической разведкой, во многом способствовали отсечению неперспективных вариантов и принятию И. В. Курчатовым безошибочных решений, о чем было сказано выше. Однако не меньшую роль сыграло и применение математического моделирования. Об этом подробно рассказал академик А. А. Самарский на симпозиуме "Российская Академия наук и первое испытание отечественного ядерного оружия", посвященном 275-летию Российской Академии наук и 50-й годовщине первого испытания советской атомной бомбы . Стремление показать партийно-политическому руководству страны свою значимость было характерно для советских спецслужб. Не избежали этого соблазна и службы научно-технической разведки. П. А. Судоплатовым была сочинена легенда о том, что Нильс Бор передал нашим разведчикам ценнейшие сведения. На самом деле это были общие данные, известные нашим физикам и без обращений к Н. Бору . Рассказ о советской ядерной программе будет неполным, если не упомянуть о применении компьютеров для расчетов реакторов атомных энергоблоков.

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Могут ли машины мыслить?

Он лишь замечает, что данные, которыми располагала госпожа Лавлейс, не позволяли ей допустить этого. Весьма возможно, что машины, о которых шла речь, в некотором смысле обладали этим свойством. Действительно, пусть некоторая машина с дискретными состояниями обладает рассматриваемым свойством. Аналитическая машина Бэббиджа была универсальной цифровой вычислительной машиной; это значит, что если бы она обладала нужной емкостью памяти и необходимой скоростью работы, то, будь в нее введена соответствующая программа, она могла бы подражать этой машине. По-видимому, этот довод не приходил в голову ни Бэббиджу, ни графине Лавлейс. Во всяком случае, от них нельзя требовать, чтобы они исчерпали все, что можно сказать по этому вопросу. Весь этот вопрос будет рассмотрен еще раз в разделе, посвященном обучающимся машинам. Один из вариантов аргумента госпожи Лавлейс это утверждение, гласящее, что машина «никогда не может создать ничего подлинно нового». На секунду возразим поговоркой, что вообще «ничто не ново под Луной»

скачать реферат История математического моделирования и технологии вычислительного эксперимента

Форрестером с глобальной моделью, показали, что в середине ХХI века человечество ждет кризис, связанный прежде всего с истощением природных ресурсов, падением численности населения и производства продуктов, ростом загрязнения окружающей среды. Известны результаты глобального моделирования явления "ядерной зимы", выполненные в ВЦ АН СССР В. В. Александровым и Г. Л. Стенчиковым под руководством академика Н. Н. Моисеева. Эти результаты дали человечеству, в том числе политикам, неопровержимые аргументы против ядерной войны, даже так называемой "ограниченной ядерной войны". Для математического моделирования и вычислительного эксперимента использовались, главным образом, универсальные цифровые вычислительные машины, доступные коллективам исследователей. В СССР в 70-80-х годах прошлого века это были БЭСМ-6 и модели ЕС ЭВМ, для которых разрабатывались библиотеки и пакеты прикладных программ вычислительной математики. С появлением персональных компьютеров стало возможно развитие информационной технологии вычислительного эксперимента, которая предусматривает поддержку пользовательского интерфейса и поиска нужных алгоритмов и программ с помощью персональных компьютеров (отечественного производства или импортных), а проведение расчетов на математических моделях - с помощью высокопроизводительных компьютеров БЭСМ-6, ЕС ЭВМ или суперкомпьютеров "Эльбрус".

Копилка декоративная "Дружок", 12,5x10x12 см.
Копилка декоративная. Материал: полистоун. Размер: 12,5x10x12 см.
334 руб
Раздел: Копилки
Набор для резки сыра из 4-х приборов и деревянной доски «Рокфор».
Сыр - продукт, требующий трепетного к себе отношения. Его производство может занимать долгие месяцы, а порой и годы. Однако если сделать
1430 руб
Раздел: Кухня
Магнитная игра "Тангос. Парадокс".
Игры «Тангос» – это компактные головоломки, которые имеют многовековую историю и предназначены для изучения детьми геометрических фигур и
471 руб
Раздел: Игры на магнитах
 Энциклопедический словарь

Труды по теории функций, механизации счета в экономике. Сконструировал и построил (1820-22) машину для табулирования. С 1823 работал над постройкой разностной машины. В 1833 разработал проект универсальной цифровой вычислительной машины — прообраза ЭВМ. БЕБЕЛЬ (Bebel) Август (1840–1913) один из основателей (1869) и руководитель германской социал-демократической партии и 2го Интернационала. Неоднократно избирался в рейхстаг. Борец против милитаризма, поборник эмансипации женщин. За выступления в защиту Парижской Коммуны, критику государственной колониальной политики и др. подвергался репрессиям (всего пробыл в заключении ок. 6 лет). БЕБРИКИ в греческой мифологии воинственный народ, которым правил Амик. Аргонавты на пути в Колхиду высаживались на берег страны бебриков (в Вифинии). БЕБУТ (тюрк.) кривой кинжал с обоюдоострым клинком. В русской армии в нач. 20 в. был на вооружении унтер-офицеров пулеметных команд, орудийных номеров легкой и горной артиллерии и солдат артиллерийских парков. БЕБУТОВ Василий Осипович (1791–1858) князь, российский генерал от инфантерии (1856)

скачать реферат Из мировой истории цифровой вычислительной техники

Из мировой истории цифровой вычислительной техники Б.Н.Малиновский. В настоящее время информатика и ее практические результаты, становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Ее технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Теперь уже очевидно, что наступающий XXI век будет веком максимального использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле и т.д. Последние десятилетия уходящего века характерны возрастанием интереса к истории развития информатики, в первую очередь к истории появления первых цифровых вычислительных машин и их создателям. В большинстве развитых стран созданы музеи, сохраняющие образцы первых машин, проводятся конференции и симпозиумы, выпускаются книги о приоритетных достижениях в этой области. История создания средств цифровой вычислительной техники уходит в глубь веков. Она увлекательна и поучительна, с нею связаны имена выдающихся ученых мира.

 Информатика, кибернетика, интеллект

Современные роботы знаменуют качественно новую ступень развития технологии промышленного производства, положения человека в системе труда. Их отличие от традиционных автоматов состоит в том, что эти принципиально новые многоцелевые технические системы способны выполнять за человека универсальные ручные 124 операции во всем их разнообразии, решая одновременно сложные логические задачи, остававшиеся до недавнего времени монополией человеческого ума [12]. Идея создания цифровых вычислительных машин в более развернутом виде (после Паскаля и Лейбница) развивалась в XIX в. Ч. Бэббиджем. Еще в 1824 г. в автоматической счетной машине был применен предложенный им принцип промежуточного хранения и считывания информации с перфорированного носителя для ввода чисел и управления последовательностью выполнения операций. В своей так называемой разностной машине, изготовление которой не было полностью завершено, Ч. Бэббидж гениально предвосхитил основные идеи современных автоматических цифровых машин. В 1833 г. в разработанной Ч

скачать реферат Выбор специальности

Цуге приступил к конструированию машины с программным управлением на механических элементах. В 1941 году такая машина была создана. Это была первая в мире универсальная цифровая вычислительная машина с программным управлением. В период с 1939 по 1944 гг. Айкеном в США была сконструирована ЦВМ с программным управлением на релейных и механических элементах. В 1938 году было продемонстрировано дистанционное управление машиной на электромеханических реле (Белл-1), разработанной Д.Стибицем. В 1942 году им было сконструировано устройство с программным управлением (Белл-П). В 1945 году в США были закончены работы под руководством Д. Маучли и Д. Эккерта по созданию первой электронной ЦВМ, получившей название ЭНИАК. Анализ сильных и слабых сторон ЦВМ ЭНИАК позволил сформулировать основные концепции организации электронных ЦВМ. Основные рекомендации заключались в необходимости использования двоичной системы счисления, иерархической организации памяти машины, создания арифметического устройства на основе схем, реализующих операцию сложения и др.

скачать реферат Анализ и синтез систем автоматического регулирования

Необходимо отметить, что реализация сложных законов регулирования возможна лишь при включении цифровой вычислительной машины в контур системы. Создание экстремальных и самонастраивающихся систем также связано с применением аналоговых или цифровых вычислительных машин. Формирование систем автоматического регулирования, как правило, выполняют на основе аналитических методов анализа или синтеза. На этом этапе проектирования систем регулирования на основе принятые допущений составляют математическую модель системы и выбирают предварительную ее структуру. В зависимости от типа модели (линейная или нелинейная) выбирают метод расчета для определения параметров, обеспечивающих заданные показатели устойчивости, точности и качества. После этого уточняют математическую модель и с использованием средств математического моделирования определяют динамические процессы в системе. При действии различных входных сигналов снимают частотные характеристики и сравнивают с расчетными. Затем окончательно устанавливают запасы устойчивости системы по фазе и модулю и находят основные показатели качества.

скачать реферат Автоматизация процесса спекания аглошихты

Особенностью построения АСУ является системный подход ко всей совокупности металлургических, энергетических и управленческих вопросов. Специалист по АСУ ТП должен владеть теорией автоматического управления, разбираться в конструкции металлургических агрегатов и основах технологии, достаточно свободно ориентироваться в работе цифровых вычислительных машин, их математическом и алгоритмическом обеспечении, уметь правильно применять технические средства информационной и управляющей техники. В АСУ ТП воплощены достижения локальной автоматики, систем централизованного контроля, электронной и вычислительной техники. Кроме того, АСУ ТП производят общую централизованную обработку первичной информации в темпе протекания технологического процесса, после чего информация используется не только для управления этим процессом, но и преобразуется в форму, пригодную для использования на выше стоящих уровнях управления для решения оперативных и организационно-экономических задач. Внедрение АСУ ТП, как и любое нововведение, связано с определенными трудностями и затратами. На этапе освоения проявляются недостатки отдельных элементов вычислительного комплекса, погрешности примененных алгоритмов управления, недостаточная адаптация персонала к условиям работы с помощью вычислительной техники и другое.

скачать реферат Первые бортовые ЭВМ ракетно-космических комплексов и их создатели

В перспективе предполагалось осуществить переход на цифровую систему обработки результатов траекторных измерений. Для решения этой задачи нужны были специалисты и на предприятие были направлены выпускники различных ВУЗов Киева и других городов, в том числе Таганрогского радиотехнического института, начавшего с 1956 года выпуск инженеров по специальности "математические счетно-решающие приборы и устройства". В 1957 году прошла практику первая группа студентов этого института, а в следующем году, после защиты дипломных проектов, она была направлена на постоянную работу. Среди молодых специалистов был и автор этих строк. Тогда и родилась идея создания малой цифровой вычислительной машины. Освоение вычислительной техники на предприятии проходило в увязке с теми изделиями и комплексами, которые осваивало предприятие и поэтому нельзя разорвать эти две темы на самостоятельные разделы. В основном это касалось систем управления боевых ракетных комплексов, космических станций и аппаратов. Большой вклад в освоение и развитие этой техники сделали руководители предприятия в разные годы: директора - Виктор Федорович Славгородский, Борис Павлович Ястребов, Дмитрий Гаврилович Топчий, главные инженеры - Николай Андреевич Лукавенко, Эдгар Филиппович Костоломов, Борис Емельянович Василенко, главные конструктора - Игорь Васильевич Бортовой, Анатолий Иванович Гудименко, Петр Иванович Подоплелов.

Набор стикеров "Среда Обитания".
Удивительный набор стикеров познакомит вашего малыша с различными животными, а также со средой их обитания: фермой, африканским оазисом,
479 руб
Раздел: Альбомы, коллекции наклеек
Магнитная азбука. Жукова Н.С.
В новом издании знаменитой «Магнитной азбуки» букв стало еще больше. И еще увеличилось количество строк на магнитном мольберте-доске. А
649 руб
Раздел: Буквы на магнитах
Качели.
Летом на даче не обойтись без качелей! Качели можно подвесить с помощью специального каната. Качаться на качалях - полезное для здоровья
346 руб
Раздел: Качели, кресла-качалки, шезлонги
скачать реферат Школа Б.И. Рамеева, универсальные ЭВМ

Школа Б.И. Рамеева, универсальные ЭВМ Наталья Дубова Башир Искандарович Рамеев начинал свою научную деятельность в области вычислительной техники в Энергетическом институте АН СССР (ЭНИН) под руководством член-корреспондента Академии наук И.С.Брука. Летом 1948 года молодой инженер и уже маститый ученый выступили соавторами оригинального проекта под названием «Автматическая цифровая электронная машина». Это был первый в стране проект цифровой ЭВМ с жестким программным управлением, завершенный за несколько месяцев до начала работ над МЭСМ. В 1949 году Б.И. Рамеев перешел в недавно созданное специально для разработки и конструирования цифровых вычислительных машин СКБ-245, организацию, которая стала негласным конкурентом ИТМ и ВТ С.И. Лебедева. Опираясь на опыт совместных работ с Бруком, Рамеев разработал проект новой машины и участвовал в его реализации в качестве заместителя главного конструктора Ю.Я.Базилевского. ЭВМ «Стрела» стала первой советской серийной ЭВМ: в промышленных условиях было выпущено 7 экземпляров этой машины.

скачать реферат Распределение памяти

более того, они вызываются только для данного конкретного объекта, и выполняемые ими действия никак не могут влиять на состояние других объектов этого типа. Память для данных-членов распределяется аналогично методам, котрые описаны выше для структур ( см. Структуры PL/1 и Структуры данных по Стендишу ). После того, как объект выполнил свою миссию в программе он уничтожается деструктором класса: память занимаемая данными-членами этого экземпляра класса освобождается. Причем важно заметить, что если объект содержал какие-либо указатели на занятую память - эта память не освобождается. Поэтому ответственность за возможное таким образом возникновение потерянной для системы памяти несет программист, а не компилятор. СПИСОК ЛИТЕРАТУРЫ 1. ГРИС Д. Конструирование компиляторов для цифровых вычислительных машин. -М.: МИР, 1975. 2. КАСЬЯНОВ В.Н., ПОТТОСИН И.В. Методы построения трансляторов. -Н.: НАУКА, 1986. 3. РОМАНОВ В.Ю. Программирование на языке С . -М.: КОМПЬЮТЕР, 1993. 4. ЦИМБАЛ А.А., МАЙОРОВ А.Г., КОЗОДАЕВ М.А. urbo C : язык и его применение. -М.: Джен Ай Лтд., 1993. 5. ЭЛЛИС М., СТРОУСТРУП Б. Справочное руководство по языку программирования С с комментариями. -М.: МИР, 1992.

скачать реферат Система автоматического регулирования

Необходимо отметить, что реализация сложных законов регулирования возможна лишь при включении цифровой вычислительной машины в контур системы. Создание экстремальных и самонастраивающихся систем также связано с применением аналоговых или цифровых вычисли­тельных машин. Формирование систем автоматического регулирования, как правило, выполняют на основе аналитических методов анализа или синтеза. На этом этапе проектирования систем регулирования на основе принятые допущений составляют математическую модель системы и выбирают предварительную ее структуру. В зависимости от типа модели (линейная или нелинейная) выбирают метод расчета для определения параметров, обеспечивающих заданные показатели устойчивости, точности и качества. После этого уточняют математическую модель и с использованием средств математического моделирования определяют динамические процессы в системе. При действии различных входных сигналов снимают частотные характеристики и сравнивают с расчетными. Затем окончательно устанавливают запасы устойчивости системы по фазе и модулю и находят основные показатели качества.

скачать реферат Кодоимпульсные ТИС

Главными из них являются: 1) большая помехоустойчивость и, как следствие этого, возможность передачи телеизмерения на большие расстояния, особенно при ис- , пользовании помехозащищенных кодов; 2) большая точность телеизмерения. Погрешность в кодоимпульсных системах возникает при преобразовании измеряемой величины в код. Точность преобразователей, преобразующих измеряемые величины в код, может быть меньше 0,1 %,т. е. выше точности преобразователей других телеизмерительных систем, которая лежит в пределах 0,5—1,5 %; 3) лучшее использование канала связи в случае применения специальных кодов, статистически согласованных с передаваемыми сообщениями; 4) получение информации в цифровой форме, что позволяет: а) без сложных преобразований вводить информацию в цифровые вычислительные машины и устройства обработки данных; б) осуществлять цифровую индикацию показаний, обеспечивающую меньшую погрешность при считывании и простоту цифровой регистрации данных. Однако кодоимпульсные системы значительно сложнее других устройств ТИ. Поэтому их целесообразно использовать только в многоканальном исполнении.Преобразование измеряемой величины в код Преобразование непрерывной аналоговой величины в цифровой эквивалент — код — осуществляется с помощью аналого-цифровых преобразователей (АЦП).

скачать реферат История развития ЭВМ

1995 г. Содержание: Введение Направления развития и поколения ЭВМ 1.Аналоговые вычислительные машины (АВМ) 2.Электронные вычислительные машины (ЭВМ) 3.Аналого-цифровые вычислительные машины (АЦВМ) 4.Поколения ЭВМ Единые серии ЭВМ 1.Отличия ЭВМ III поколения от прежних 2.Особенности машин ЕС ЭВМ 3.Агрегатный принцип построения ЭВМ 4.Интерфейс, селекторный и мультиплексный каналы 5.Структура машин ЕС ЭВМ 6.Машинные элементы информации 7.Система программного обеспечения 8.Программная совместимость 9.Защита памяти 10.Режимы работы ЕС ЭВМ Микропроцессоры и их применение 1.Эффективность микропроцессоров 2.Структура 3-магистрального МП 3.Области применения МП Многопроцессорные вычислительные системы, сети, ЭВМ V поколения 1.Магиспральная организация процессоров ЭВМ 2.Матричная параллельная организация процессоров 3.Мультипроцессорная организация 4.Сети связи ЭВМ 5.Особенности ЭВМ V поколения Введение. С увеличением объёма вычислений появился первый счётный переносной инструмент - “Счёты”. В начале 17 века возникла необходимость в сложных вычислениях. потребовались счётные устройства, способные выполнять большой объём вычислений с высокой точностью. В 1642 г. французский математик Паскаль сконструировал первую механическую счётную машину - “Паскалину”. В 1830 г. английский учёный Бэбидж предложил идею первой программируемой вычислительной машины (“аналитическая машина”).

Набор маркеров-текстовыделителей "Boss Original Pastel", 4 цвета.
Набор текстовыделителей — классика в пастельных тонах, ориентированный на течение в индустрии моды. Выполненный в спокойной цветовой
535 руб
Раздел: Текстовыделители
Подгузники "Солнце и Луна. Нежное прикосновение", размер: 2/S (3-6 кг), 70 штук.
Подгузники "Солнце и Луна. Нежное прикосновение" сделаны по японской технологии в сотрудничестве с японской корпорацией WATASHI
661 руб
Раздел: 0-5 кг
Машинка закаточная (улитка, полуавтомат) "Мещера-1".
Машинка идеальна для домашнего консервирования, она проста в использовании и надежна в работе. Конструкция машинки обеспечивает ее
419 руб
Раздел: Консервирование
скачать реферат Проблема языка в современных исследованиях по искусственному интеллекту

Результаты, получаемые с помощью таких машин обладают большей погрешностью вследствие того, что считывание результатов – тоже процесс, требующий времени, а за это время показания изменяются. Машинам с дискретными состояниями соответствуют среди реальных машин, например, цифровые компьютеры, с не дискретными состояниями – аналоговые. В этом отношении на роль универсального «мыслящего» имитатора, построенного по модели Тьюринга, лучше подходят цифровые вычислительные машины. Трудно сказать, насколько уместно проводить аналогию между человеческим организмом и машиной Тьюринга в структурном отношении: для этого требуется доказать, что ментальные состояния подобны внутренним состояниям таких машин, а именно – дискретны. Трудности в проведении такой аналогии, однако, с точки зрения Тьюринга – не помеха компьютерному моделированию сознания: ведь его критерий основан на понятии имитации – если машина Тьюринга (с дискретными состояниями) способна имитировать поведение любой машины с не дискретными состояниями (а по Тьюрингу, это – так), т.е. решать всю совокупность задач, решаемых такими машинами, то нет разницы в том, насколько обоснованно полагать внутренние состояния человека дискретными.

скачать реферат История развития вычислительной техники

Министерство Образование Московская Государственная Академия Приборостроения и информатики. Кафедра Информационно управляющие системы Реферат История развития вычислительной техники Выполнил: Базаров Денис ТИ-1(2101) Проверила: Письменная Е.В. Москва 2002 Содержание: Введение . 3 1.Аналоговые вычислительные машины (АВМ) . 4 2.Электронные вычислительные машины (ЭВМ) . 4 3.Аналого-цифровые вычислительные машины (АЦВМ) . 5 4.Поколения ЭВМ . 6 2.Особенности ЭВМ V поколения . 7 Список использованной литературы. 8 Введение. С увеличением объёма вычислений появился первый счётный переносной инструмент - ). V. Синтезаторы, звуки, способность вести диалог, выполнять команды, подаваемые голосом или прикосновением. 2.ЭВМ V поколения. ЭВМ IV поколения не получили широкого распространения из-за своей специфики. Это явилось стимулом для разработки ЭВМ V поколения, при разработки которых ставились совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ I - IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основными задачами разработчиков ЭВМ V поколения являлось создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), возможность ввода информации в ЭВМ при помощи голоса, различных изображений.

скачать реферат Организация как открытая динамическая система

Его методы стали использоваться не только чаще, но с большим размахом и глубиной, о чем свидетельствуют технические достижения. Этому содействовало развитие аналоговых и цифровых вычислительных машин, а также использование системного подхода для определения тематики и проведения соответствующих исследований. Бурное развитие науки и техники и наша изобретательность породили больше идей, касающихся полезных и нужных усовершенствований, чем мы можем разработать и внедрить одновременно. Использование системного подхода для согласования потребностей с возможностями позволит направить наши усилия в те области, где можно ожидать наибольшего эффекта. Блестящим примером такого комплексного применения методов системного подхода служат исследования НАСА по использованию орбитальных исследовательских лабораторий. Эти исследования были осуществлены с целью анализа и сопоставления потенциальных выгод, которые можно было бы извлечь из проведения некоторых исследований на борту орбитальной исследовательской лаборатории. Чтобы лучше понять технику применения методов системного подхода в данном случае, обсудим более подробно социально-экономические выгоды и сравним их с требованиями к исследованиям, критерием эффективности которых служит возможность улучшения условий жизни на Земле.

скачать реферат Internet. Службы и возможности

Единственным способом формирования такой компьютерной сети было особое соединение компьютеров, при котором коммуникация не зависела бы от какого-либо центрального сервера. При потере одного, нескольких или даже большей части компьютеров, подсистемы должны были продолжать работать, обеспечивая неотвратимость ответного удара. В известном смысле это казалось нетрудной задачей. Каждое здание имеет систему электропроводки, при которой одна перегоревшая лампочка не влияет на работу других. Но с компьютерами это было невозможно. В американской компьютерной индустрии 1970х-80х годов разные производства выпускали массу компьютеров с различными оперативными системами (например, IBM, цифровые вычислительные машины, Microsof и Apple), всевозможные устройства памяти с разными разрешающими возможностями. Пятьдесят компьютеров IBM могли быть успешно объединены в сеть IBM компьютеров, также как и пятьдесят отдельных компьютеров Макинтош, но пятьдесят IBM и пятьдесят Макинтошей было намного труднее объединить в сеть из ста компьютеров, способных на обмен информацией.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.