![]() 978 63 62 |
![]() |
Сочинения Доклады Контрольные Рефераты Курсовые Дипломы |
РАСПРОДАЖА |
все разделы | раздел: | Компьютеры, Программирование | подраздел: | Компьютеры и периферийные устройства |
Принцип программного управления. Микропроцессор. Алгоритм работы процессора | ![]() найти еще |
![]() Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок |
Этот принцип был самым прогрессивным среди включенных в проект, поскольку обеспечивал универсальность ЭВМ. В соответствии с принципом программного управления любая ЭВМ это совокупность аппаратной (технической) и программной частей; 2)PПринцип условного перехода: команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода, которые меняют последовательное выполнение команд в зависимости от значений данных; 3)PПринцип размещения программы в памяти: программа, требуемая для работы ЭВМ, предварительно размещается в памяти компьютера, а не вводится команда за командой; 4)PПринцип иерархии памяти: память ЭВМ неоднородна. Для часто используемых данных выделяется память меньшего объема, но большего быстродействия; для редко используемых данных выделяется память большего объема, но меньшего быстродействия; 5)Pпринцип двоичной системы счисления: для внутреннего представления данных и программ в памяти ЭВМ применяется двоичная система счисления, которую можно проще реализовать технически. Рисунок 3.1
Работающая модель, которую он создал в 1822 году, была шестиразрядным калькулятором, способным производить вычисления и печатать цифровые таблицы. Второй проект Бэббиджа – аналитическая машина, использующая принцип программного управления и предназначавшаяся для вычисления любого алгоритма. Проект не был реализован, но получил широкую известность и высокую оценку ученых. Аналитическая машина состояла из следующих четырех основных частей: блок хранения исходных, промежуточных и результирующих данных (склад – память); блок обработки данных (мельница – арифметическое устройство); блок управления последовательностью вычислений (устройство управления); блок ввода исходных данных и печати результатов (устройства ввода / вывода). Одновременно с английским ученым работала леди Ада Лавлейс (Ada Byro , Cou ess of Lovelace, 1815–1852). Она разработала первые программы для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени. Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ «E IAC». 1887 г. – создание Г. Холлеритом в США первого счетно-аналитического комплекса, состоящего из ручного перфоратора, сортировочной машины и табулятора.
Поскольку рассмотренная система описывается линейным дифференциальным уравнением 1-го порядка, она носит название линейной системы 1-го порядка. Более сложным поведением обладают линейные системы 2-го и более высоких порядков и особенно нелинейные системы. Возможны системы, в которых принцип программного управления комбинируется с задачей регулирования в смысле поддержания устойчивого значения той или иной величины. Так, например, в описанный регулятор комнатной температуры может быть встроено программное устройство, меняющее значение регулируемого параметра. Задачей такого устройства может быть, скажем, поддержание температуры +20 °С в дневное время и снижение её до +16°С в ночные часы. Функция простого регулирования перерастает здесь в функцию слежения за значением программно изменяемого параметра. В более сложных следящих системах задача состоит в поддержании (возможно более точном) некоторой фиксированной функциональной зависимости между множеством самопроизвольно меняющихся параметров и заданным множеством регулируемых параметров
Интегральная схема – электронная схема специального назначения, выполненная в виде единого полупроводникового кристалла, объединяющего большое число диодов и транзисторов. Классификация ЭВМ по мощности (быстродействию): 1).Супер-ЭВМ – машины для крупно-маштабных задач (фирма IBM). 2).Большие ЭВМ – машины для территориальных, региональных задач. 3).Средние ЭВМ – машины очень широкого распространения. 4).Малые ЭВМ. 5).ПЭВМ (персональные ЭВМ). 6).Микро ЭВМ и микропроцессоры. 7).Сети ЭВМ.Общие принципы построения современных ЭВМ.Основным принципом построения ЭВМ является программное управление, в основе которого лежит представление алгоритма решения любой задачи в виде программы вычислений. Алгоритм – это конечный набор предписаний, определяющий решения задачи посредством конечного количества операций (ISO 2382/1-84 международный стандарт). Программа – это упорядоченное последовательность команд подлежащих обработки. Принцип программного управления может быть осуществлен разными способами. Стандартом для построения практически всех ЭВМ был представлен в 1945 году Нейманом. Схема ЭВМ, отвечающая программному принципу управления отражает характер действия человека по алгоритму.
Данная форма управления имеет высокую оперативность и быстроту реализации проекта. Линейно-функциональная форма – структурное разделение подразделений, в основе которой лежит принцип децентрализации управления при проведении работ по каждому инновационному проекту в отдельности. Она характеризуется многофункциональностью внутренней структуры, которая повторяет структуру предприятия. В ее основе находятся тематические и функциональные подразделения, специализирующиеся по видам работ и связанные в одну иерархическую структуру по принципу единоначалия. Структурной специализации свойственно четкое распределение прав и обязанностей, что дает высокую производительность труда, эффективность работы, делает более простыми структуру и процесс управления. 16 ИННОВАЦИОННЫЙ МАРКЕТИНГ КАК ОСОБЫЙ ВИД ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ Инновационный маркетинг – это обязательная часть инновационного менеджмента. Появление этой экономической дисциплины вызвано увеличением роли нововведений в деятельности фирм. Маркетинг позволяет повысить результат от коммерциализации инноваций
Аппаратура интерфейсного канала. Каждый контроллер снабжен интерфейсом для связи с внешними устройствами (управляющей вычислительной машиной и т.п.),имеющими приемо-передатчик преобразующими передаваемую информацию в виде последовательного кода (биты) в параллельный код (байты).Обмен информацией осуществляются только в цифровой форме. Алгоритмические блоки В исходном состоянии алгоритмические блоки как физическое устройство отсутствуют и ни какие функции по обработке сигналов контроллером не выполняются. Они появляются только тогда , когда в процессе технологического программирования в процессор записывается алгоритм (программа) обработки сигналов. Библиотека алгоритмов Контоллер содержит обширную библиотеку алгоритмов (программ),обработки информации достаточную для реализации сравнительно сложных задач автоматического регулирования и программного управления. Помимо алгоритмов автоматического регулирования и логико-программного управления в библиотеке имеется большой набор алгоритмов статического, математического, логического и аналого-дискретного преобразования сигналов. 3.2. Общие свойства алгоритмов и алгоблоков.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ТВЕРСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра информационные системы Реферат по дисциплине «Аппаратные средства» на тему: «Процессоры ЭВМ» Выполнила: студентки 1 курса заочного отделения группы ПИЭ-1 шифр 01302 Колосова Олеся Николаевна Работу проверил Тверь 2002г.План: 1. Введение 2. Микропроцессор 1. Общая структура микропроцессора 2. Характеристики микропроцессоров 3. Сопроцессоры 4. Наиболее важные параметры микропроцессоров 5. Команды микропроцессора 6. Основной алгоритм работы процессора 3. БИС микропроцессоров 4. Направления в производстве микропроцессоров 1. Микропроцессоры с архитектурой RISC 2. Микропроцессоры с архитектурой СISC 5. Обзор некоторых 16- и 32 разрядных микропроцессоров 1. Процессоры фирмы I el 5.1.1 Первые процессоры фирмы I el 5.1.2 Процессор 80286 5.1.3 Процессор 80386 5.1.4 Процессор 80486 5.1.5 Обзор последующих процессоров фирмы I el 2. Процессоры фирмы AMD 6. Приложения1. Введение. За время существования электронная промышленность пережила немало потрясений и революций. Коренной перелом - создание электронных микросхем на кремниевых кристаллах, которые заменили транзисторы и которые назвали интегральными схемами.
Содержание Стр. Введение 3 1. История развития процессоров 4 1.1. Процессоры фирмы I EL . 5 1.2. Процессоры фирмы AMD . 16 2. Алгоритм работы процессора . 22 2.1. Устройство процессора . 22 2.2. Алгоритм работы процессора . 24 2.2.1. Арифметико-логическое Устройство 24 2.2.2. Прерывания процессора . 32 Заключение 34 Список литературы . 35 Введение Одним из основных устройств современного персонального компьютера является центральный процессор. Который, на первый взгляд, просто выращенный по специальной технологии кристалл кремния. Однако этот кристалл содержит в себе множество отдельных элементов – транзисторов, которые в совокупности и наделяют компьютер способностью «думать». История создания микропроцессора началась еще в 50-х годах, когда на смену электронным лампам пришли компактные «электронные переключатели» - транзисторы, затем – интегральные схемы, в которых впервые удалось объединить на одном кристалле кремния сотни крохотных транзисторов. Но все- таки отсчет летоисчисления компьютерной эры ведут с 1971 года, с момента появления первого микропроцессора. За три десятка лет, прошедших с этого знаменательного дня, процессоры сильно изменились.
Несмотря на все достигнутые успехи, классическая структура ЭВМ не обеспечивает возможностей дальнейшего увеличения производительности. Наметился кризис, обусловленный рядом существенных недостатков: • плохо развитые средства обработки нечисловых данных (структуры, символы, предложения, графические образы, звук, очень большие массивы данных и др.); • несоответствие машинных операций операторам языков высокого уровня; • примитивная организация памяти ЭВМ; • низкая эффективность ЭВМ при решении задач, допускающих параллельную обработку и т.п. Все эти недостатки приводят к чрезмерному усложнению комплекса программных средств, используемого для подготовки и решения задач пользователей. №.5 Принцип программного управления ЭВМ. Основным принципом построения всех современных ЭВМ является программное управление. В основе его лежит представление алгоритма решения любой задачи в виде программы вычислений. .Принцип программного управления может быть осуществлен различными способами. Стандартом для построения практически всех ЭВМ стал способ, описанный Дж. фон Нейманом в 1945 г. при построении еще первых образцов ЭВМ. Суть его заключается в следующем.
Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ. В 1946 году группа учёных во главе с Джоном фон Нейманом (Герман Голдстайн, Артур Беркс) опубликовали статью «Предварительное рассмотрение логической конструкции Электронно-вычислительного устройства». В статье обосновывалось использование двоичной системы для представления данных в ЭВМ (преимущественно для технической реализации, простота выполнения арифметических и логических операций. До этого машины хранили данные в десятеричном виде), выдвигалась идея использования программами общей памяти. Имя фон Неймана было достаточно широко известно в науке того времени, что отодвинуло на второй план его соавторов, и данные идеи получили название «Принципы фон Неймана». Принцип использования двоичной системы счисления для представления данных и команд; Принцип программного управления. Программа состоит из набора команд, которые выполняются процессором друг за другом в определенной последовательности; Принцип однородности памяти.
СОДЕРЖАНИЕ Исходные данные Техническое задание 1. Алгоритм работы процессора 1.1 Выбор и обоснование алгоритма 1.2 Техническое описание алгоритма 2. Структурная электрическая схема центральной части ЭВМ 2.1 Выбор и обоснования структурной электрической схемы центральной части ЭВМ 2.2 Техническое описание структурной электрической схемы центральной части ЭВМ 3. Функциональная электрическая схема процессора 3.1 Выбор и обоснование функциональной электрической схемы процессора 3.2 Техническое описание функциональной электрической схемы - операционная часть 3.3 Техническое описание функциональной электрической схемы - управляющая часть 4. Принципиальная электрическая схема РОН и ИАЛУ 4.1 Выбор и обоснование элементной базы 4.2 Используемые цифровые микросхемы и их параметры 4.3 Техническое описание принципиальной электрической схемы РОН 4.4 Техническое описание принципиальной электрической схемы ИАЛУ 5. Расчетная часть 5.1 Проверочный нагрузочный расчет для блока 5.1.1 Проверочный нагрузочный расчет для РОН 5.1.2 Проверочный нагрузочный расчет для ИАЛУ 5.2 Расчет потребляемой мощности блока 5.2.1 Расчет потребляемой мощности РОН 5.2.2 Расчет потребляемой мощности ИАЛУ 5.3 Расчет надежности для блока 5.3.1 Расчет надежности для РОН 5.3.2 Расчет надежности для ИАЛУ Заключение Литература 2 3 5 5 5999 11111112 20 20 222930 32 32 32 32 33 33 33 33 33 33 35 36 ИСХОДНЫЕ ДАННЫЕОперации: - сложение; - вычитание; умножение; И; ИЛИ; сложение по модулю два; запись; загрузка; УП по флагу; БПВ; ОСТАНОВ.
Московский Государственный Инженерно-Физический Институт (Технический Университет) Факультет Кибернетики Кафедра «Кибернетика» Пояснительная записка к дипломному проекту и учебно-исследовательской работе на тему: Создание автоматизированной системы расчета трудоемкости разработки и сопровождения программных средств Выполнил студент группы В6-29П (Власова Е.А.) Руководитель (Золотухина Е.Б.) Оценка: Комиссия: ( ) ( ) ( ) ( )Москва 1999 Содержание Введение3 Постановка задачи4 Обзор требований к автоматизированной системе расчета трудоемкости разработки и сопровождения программных средств5 Требования к системе в целом5 Требования к функциям системы5 Требования к видам обеспечения5 Требования к документации6 Алгоритмы работы автоматизированной системы расчета трудоемкости разработки и сопровождения программных средств7 Описание алгоритма работы модуля
Наиболее явно принцип выражен в работах Л. Э. Я. Брауэра (основателя интуиционизма), близок он преконструктивистам, А. Пуанкаре, Г. Вейлю, А. А. Маркову (мл. ) Интуиционисты и конструктивисты убеждены в ненужности доказательств от противного. Достаточны "положительные" доказательства. Отсюда попытки построить математику без отрицания (Грисс Г. – см. . Брауэр не раз высказывался в том духе, что жизнь, искусство, музыка, математика – в сущности одно Это можно понимать и как убеждение в том, что деятельность – ведущее свойство человека. Примыкает к принципу становления и следующий принцип. Фольклор математиков, теория алгоритмов, работы А. Н. Колмогорова по алгоритмической сложности, теория вероятностей, теория клеточных автоматов, фрактальная геометрия позволяют сформулировать 2. Принцип сложности, означающий возможность обогащения, усложнения системы в процессе познания = становления, т. е. вероятность скачкообразного возрастания сложности структур ( L S – процесс по Курдюмову), что связано с идеей конструктивного (творящего) хаоса, хаоса как океана информации.
Проектируемое устройство представляет собой микропроцессорную систему обработки информации и управления, реализованную на основе современной элементной базы (БИС и СБИС) и принципа программного управления. Для построения микропроцессорной системы требуется ограниченный набор аппаратных ресурсов, а реализация функций системы возлагается на программное обеспечение. Таким образом, микропроцессорная система – это цифровая система обработки информации и управления, функциональные возможности которой определяются программным обеспечением, а взаимосвязь с внешней средой обеспечивается внешними устройствами (ВУ), такими как : устройства внешней памяти – накопители на гибких магнитных дисках (НГМД) и жестких винчестеровских дисках (НМД); устройства связи с оператором – пульты управления, знакоцифровые индикаторы, клавиатура и телевизионные мониторы, графические дисплеи, печатающие устройства (принтеры), устройства ввода/вывода графической и речевой информации, изображений; устройства сопряжения с объектами – аналоговые и цифровые датчики информации и исполнительные механизмы; устройства дистанционной связи – модуляторы/демодуляторы (модемы) и пр.
Основной задачей курсовой работы является синтез и последующее исследование следящей системы с использованием современных методов и инструментов теории управления. Основным требованием, предъявляемым к следящим системам, является минимум погрешности , определяемой как разность между заранее неизвестным законом и управляемой величиной . Следящая система представляет собой замкнутую систему регулирования угла поворота вала, управляемого двигателем; задающее воздействие устанавливается путем поворота некоторого задающего вала. Выполнение данной курсовой работы охватывает следующие разделы курса «Теория управления»: «Составление математических моделей элементов систем и регулярных воздействий»; «Преобразование моделей»; «Аналитический синтез уравнений управляющего устройства по требованиям к качеству системы»; реализация этих уравнений, т.е. разработка схемы устройства управления или алгоритма работы цифрового варианта устройства управления. Следящие системы применяются для управления радиолокационными антеннами, радиотелескопами, артиллерийскими установками на подвижных платформах, а также для регулирования синхронности и синфазности вращения валов ведущего и ведомого двигателей в том случае, когда они расположены на достаточно большом расстоянии друг от друга.
Разработка алгоритма системы автоматического управления линией На основании технологической схемы линии и учитывая требования к схеме управления, составим алгоритм работы линии. Составим словесное описание алгоритма управления, учитывая, что включение агрегатов должно производится в обратной последовательности направлению движения корма. 1. Включение линии оператором. 2. Включение клапана подачи воды. 3. Включение компрессора. 4. Включение сборного транспортера. 5. Включение продольных транспортеров. 6. Заполнение пневмокотла навозом. 7. Остановка продольных транспортеров. 8. Остановка сборного транспортера. 9. Закрытие затвора. 10. Вытеснение навоза в навозохранилище. Заменим обозначение электродвигателей, датчиков, исполнительных механизмов, приведенных на функциональной схеме, условными обозначениями релейно-контактных символов. Соответствие механизма и условного его обозначения приведены в таблице 1. Таблица 1 Обозначение Элемента Наименование командного прибора и исполнительного устройства В1 Датчик заполнения охлаждающей емкости компрессора В2 Датчик давления сжатого воздуха в ресивере В3 Датчик открытого положения затвора В4 Датчик закрытого положения затвора B5 Датчик верхнего уровня пневмокотла В6 Датчик нижнего уровня пневмокотла XI Привод компрессора Х2 Клапан заполнения компрессора водой Х3 Привод сборного транспортера Х4 Привод продольного транспортера Х5 Привод продольного транспортера Х6 Прямой ход затвора Х7 Обратный ход затвора Упрощенная функциональная схема технологического процесса приведена на рисунке 2.
Следует обратить особое внимание на то, что кодовое разделение сигналов, как линейных химических, так и пространственных – стереохимических, широко применяемое в живых системах, является базовой основой всех информационных передач генома. Только понимание того, что информация в молекулярной системе записывается, передаётся и реализуется с помощью тех молекулярных кодов и кодовых посланий, которые загружены в структуру различных биомолекул, может помочь разобраться с принципами и механизмами организации живой формы материи. К примеру, важно знать, что любая полипептидная цепь всегда является эквивалентом соответствующего кодового послания генома, указывающего будущие характеристики белковой молекулы . В генетической памяти живой клетки может храниться множество программ, обеспечивающих те или иные биологические функции и процессы. Поэтому, автоматическое управление процессами решения различных биологических задач в живой системе осуществляется на основе принципа программного управления. Для программной переработки генетической информации в живой клетке широко применяется принцип микропрограммного управления, когда выполнение одной биологической операции, например, биосинтез белка, распадается на последовательность отдельных элементарных операций.
При техническом обслуживании ТО-2 произвести все работы в объеме технического 'обслуживания ТО-1 и дополнительно устранить обнаруженные неисправности; проверить наличие импульсов управления, согласно алгоритму работы блоков управления обеих секций электровоза на всех четырех зонах в режимах тяги и рекуперации, подключая плюсовый вывод осциллографа поочередно на зажимы XI -ХВ, Х51 , Х61, ХЗ1, Х41, Х5°, Х6°, а его минусовый - на зажим Ж; проверить надежность закрытия замков, пломбировку кассет и крышки шкафа. Неисправную кассету заменить. Проверить панель сигнализации ЗВИП-913 и регулятор напряжения РН-43. При необходимости продуть сжатым воздухом 200-300 кПа (2-3 кгс/см2), обращая при этом внимание на исправность монтажа. Проверить годность предохранителя и в случае, если вставка сгорела, то заменить предохранитель.
![]() | 978 63 62 |