телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы

РАСПРОДАЖАОбразование, учебная литература -30% Бытовая техника -30% Игры. Игрушки -30%

все разделыраздел:Математика

Евклидова и неевклидова геометрия

найти похожие
найти еще

Ночник-проектор "Звездное небо, планеты", черный.
Оригинальный светильник-ночник-проектор. Корпус поворачивается от руки. Источник света: 1) Лампочка (от карманных фанариков); 2) Три
350 руб
Раздел: Ночники
Горшок торфяной для цветов.
Рекомендуются для выращивания крупной рассады различных овощных и цветочных, а также для укоренения саженцев декоративных, плодовых и
7 руб
Раздел: Горшки, ящики для рассады
Наклейки для поощрения "Смайлики 2".
Набор для поощрения на самоклеящейся бумаге. Формат 95х160 мм.
19 руб
Раздел: Наклейки для оценивания, поощрения
Содержание: Постулаты Евклида Попытки доказательства V постулата Евклида Кант об априорных понятиях Появление неевклидовой геометрии Янош Бояи. Геометрия Лобачевского Непротиворечивость геометрии Лобачевского Развитие евклидовой геометрии Список литературы: Постулаты Евклида Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение настолько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда “Начал” оно было единственным руководством для изучающих геометрию. “Начала” состоят из 13 книг, посвященных геометрии и арифметике в геометрическом изложении. Каждая книга “Начал” начинается определением понятий, которые встречаются впервые. Так, например, первой книге предпосланы 23 определения. В частности, Определение 1. Точка есть то, что не имеет частей. Определение 2. Линия есть длины без ширины Определение 3. Границы линии суть точки. Вслед за определениями Евклид приводит постулаты и аксиомы, то есть утверждения, принимаемые без доказательства. Постулаты I. Требуется, чтобы от каждой точки ко всякой другой точке можно было провести прямую линию. II . И чтобы каждую прямую можно было неопределенно продолжить. III. И чтобы из любого центра можно было описать окружность любым радиусом. IV. И чтобы все прямые углы были равны. V. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние внутренние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых. Аксиомы I. Равные порознь третьему равны между собой. II. И если к ним прибавим равные, то получим равные. III. И если от равных отнимем равные, то получим равные. IV. И если к неравным прибавим равные, то получим неравные. V. И если удвоим равные, то получим равные. VI. И половины равных равны между собой. VII. И совмещающиеся равны. VIII. И целое больше части. IX. И две прямые не могут заключать пространства. Иногда IV и V постулаты относят к числу аксиом. Поэтому пятый постулат иногда называют XI аксиомой. По какому принципу одни утверждения относятся к постулатам, а другие к аксиомам, неизвестно. Никто не сомневался в истинности постулатов Евклида, что касается и V постулата. Между тем уже с древности именно постулат о параллельных привлек к себе особое внимание ряда геометров, считавших неестественным помещение его среди постулатов. Вероятно, это было связано с относительно меньшей очевидностью и наглядностью V постулата: в неявном виде он предполагает достижимость любых, как угодно далеких частей плоскости, выражая свойство, которое обнаруживается только при бесконечном продолжении прямых. Попытки доказательства V постулата Евклида Возможно, что уже сам Евклид пытался доказать постулат о параллельных. В пользу этого говорит то обстоятельство, что первые 28 предложений “Начал” не опираются на V постулат. Евклид как бы старался отодвинуть применение этого постулата до тех пор, пока использование его не станет настоятельно необходимым. Одни математики старались доказать постулат о параллельных, применяя только другие постулаты и те теоремы, которые можно вывести из последних, не используя сам V постулат.

Но осы, гнездо которых Вы потревожите, полетят Вам на голову”; по-видимому, под “потревоженными осами” Гаусс имел в виду сторонников традиционных взглядов на геометрию, а также априоризма математических понятий. Янош Бояи. Независимо от Лобачевского и гаусса к открытию неевклидовой геометрии пришел венгерский математик Янош Бояи (1802-1860), сын Ф. Бояи. Когда Я. Бояи пришел к тем же идеям, что Лобачевский и гаусс, отец не понял его, однако предложил напечатать краткое изложение его открытия в виде приложения к своему руководству по математике, вышедшему в 1832г. Полное название труда Я. Бояи – “Приложение, содержащее науку о пространстве, абсолютно истинную, не зависящую от истинности или ложности XI аксиомы Евклида (что a priori никогда решено быть не может)” и его обычно коротко называют просто “Аппендикс”. Открытие Я. Бояи не было признано при его жизни; Гаусс, которому Ф. Бояи послал "Аппендикс", понял его, но никак не способствовал признанию открытия Я. Бояи. Геометрия Лобачевского В мемуаре “О началах геометрии” (1829) Лобачевский прежде всего воспроизвел свой доклад 1826г. Он определяет основные понятия геометрии, не зависящие от V постулата, и заметив, что сумма углов прямолинейного треугольника не может быть , как это имеет место у сферических треугольников, Лобачевский заявляет: “Мы видели, что сумма углов прямолинейного треугольника не может быть . Остается предполагать эту сумму или . То и другое может быть принято без всякого противоречия впоследствии, от чего и происходят две Геометрии: одна, употребительная доныне по своей простоте, соглашается со всеми измерениями на самом деле; другая, воображаемая, более общая и потому затруднительная в своих вычислениях, допускает возможность зависимости линий от углов”. Лобачевский указывает, что в “воображаемой геометрии” сумма углов треугольника всегдаи две прямые могут не пересекаться в случае, когдаони образуют с секущей углы, в сумме меньшие . Параллельные прямые определяются как такие, которые не пересекаются, но могут быть получены предельным переходом из пересекающихся. Через каждую точку плоскости проходят две прямые, параллельные данной прямой, лежащей в этой плоскости; эти прямые делят пучок прямых, проходящих через данную точку, на четыре области, в двух из которых проходят прямые, пересекающие данную прямую, а в двух – прямые, которые не пересекают эту прямую и не могут быть получены предельным переходом из пересекающихся – такие прямые называются расходящимися; параллельные прямые разграничивают пресекающие прямые от расходящихся (на рис. условно изображены прямые и , проведенные через точку А параллельно прямой , прямые и , проведенные через точку А и пресекающие прямую , и прямые и , расходящиеся с прямой ). Угол между прямой, проведенной через точку А параллельно прямой , и перпендикуляром, опущенным из А на , Лобачевский называет “углом параллельности” и показывает, что функция , выражающая зависимость этого угла от длины а перпендикуляра, может быть (в современных обозначениях) записана в виде =2arc g, (1) где q – некоторая постоянная. При а0 угол параллельности всегда острый, причем он стремится к при , постоянная же q может служить на плоскости Лобачевского абсолютной единицей длины, аналогичной абсолютной единицей длины, аналогичной единице угла в евклидовом пространстве.

Я прошел весь беспросветный мрак этой ночи, и всякий светоч, всякую радость жизни я в ней похоронил Этот беспросветный мрак никогда не прояснится на земле, и никогда несчастный род человеческий не будет владеть чем-либо совершенным даже в геометрии. Это большая и вечная рана в моей душе ”. Беспросветный мрак, о котором с горечью писал старший Бойяи, рассеял Лобачевский и, несколько позднее, Я. Бояи. Кант об априорных понятиях В то время многие математики с воодушевлением восприняли философскую теорию Иммануила Канта о человеческом познании. В “Пролегоменах ко всякой будущей метафизике, могущей появиться как наука” (1783) он писал: “Мы можем с достоверностью сказать, что некоторые чистые априорные синтетические познания имеются и нам даны, а именно чистая математика и чистое естествознание, потому что оба содержат положения, частью аподиктически достоверные на основе одного только разума, частью же на основе общего согласия из опыта и тем не менее повсеместно признанные независимыми от опыта”. “Критика чистого разума” (1781) Канта начинается еще более обнадеживающими словами. Кант утверждает, что все аксиомы и теоремы математики истинны. Он говорит, что наш разум сам по себе владеет формами пространства и времени. Пространство и время представляют собой разновидности восприятия (называемые Кантом интуитивными представлениями), посредством которых разум созерцает опыт. Мы воспринимаем, организуем и осознаем опыт в соответствии с этими формами созерцания разум накладывает формы созерцания на полученные им чувственные восприятия, вынуждая те подстраиваться под заложенные в нем схемы. Так как интуитивное представление о пространстве берет свое начало в разуме, некоторые свойства пространства разум автоматически. Такие утверждения, как “прямая – кратчайший путь между двумя точками”, “через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну”, или как постулат Евклида о параллельных, Кант называет априорными искусственными истинами. Они составляют неотъемлемую часть нашего умственного багажа. Геометрия занимается изучением лишь логических следствий из таких утверждений. Уже одно то, что наш разум созерцает опыт через изначально присущие ему “пространственные структуры”, означает, что опыт согласуется с априорными синтетическими истинами и теоремами. Порядок и рациональность, которые мы, как нам кажется, воспринимаем во внешнем мире, в действительности проецируется на внешний мир нашим разумом и формами нашего мышления. Конструируя пространство на основе работы клеток головного мозга человека, кант не видел причин для отказа от евклидова пространства. Собственную неспособность представить другие геометрии Кант счел достаточным основанием, чтобы утверждать, что другие геометрии не могут существовать. Появление неевклидовой геометрии Но многовековые попытки доказательства пятого постулата Евклида привели в конце концов к появлению новой геометрии, отличающейся от евклидовой тем, что в ней V постулат не выполняется. Эта геометрия теперь называется неевклидовой, а в России носит имя Лобачевского, который впервые опубликовал работу с ее изложением. И одной из предпосылок геометрических открытий Н. И. Лобачевского (1792-1856) был как раз его материалистический подход к проблемам познания.

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Эйнштейн (Жизнь, Смерть, Бессмертие)

Если на поверхности сферы начертить треугольник, то сумма его углов будет больше двух прямых углов, иначе говоря, здесь будут царить соотношения неевклидовой геометрии. Когда радиус сферы неограниченно растет, эти соотношения неограниченно стремятся к евклидовым, и мы можем сказать, что на поверхности сферы бесконечного радиуса неевклидова геометрия уступает место евклидовой. Но отсюда еще не следует однозначная физическая теория, переходящая в иную при бесконечном значении некоторого параметра. В физике XIX в. существовало несколько сходное, но все же иное соотношение между теориями. В учении о движении молекул необратимые процессы появляются, когда число молекул становится достаточно большим, и законы необратимых процессов становятся все более точными по мере увеличения этого числа. Но основная проблема учения о теплоте и состоит в связи обратимых процессов в системах с небольшим числом молекул и необратимых процессов в больших статистических ансамблях. Уже это представление о различных теориях, законных, т.е. достаточно точно описывающих действительность, при различных масштабах явлений, ломает схемы Маха и Пуанкаре

скачать реферат Геометрия Лобачевского

Геометрия Лобачевского. Исаев Андрей. Гурьев Дмитрий. «Начала» - величайший памятник деятельности Евклида, в котором он собрал воедино всё то, что сделали его предшественники в области геометрии и «словесной алгебры». Но не только в этом его заслуга. Он также внёс много своего, нового, оригинального. Вплоть до XX в. геометрию в школах преподавали по учебникам, в которые были включены евклидовы «Начала», переведённые и литературно обработанные. Однако не всё написанное Евклидом удовлетворяло живших после него математиков. Великолепной была его попытка дать аксиоматическое изложение геометрии, т.е. сформулировать небольшое количество аксиом, из которых логически выводятся все теоремы геометрии. Список аксиом сразу же подвергся критике, некоторые из них оказались совсем не нужными, например, что «все прямые углы равны между собой». Так называемый пятый постулат Евклида вызвал особые нарекания математиков. Именно эта аксиома, как показала историческое развитие науки, содержала в себе зародыш другой, неевклидовой геометрии. Вот о чём говорится в пятом постулате: Если две прямые a и b образуют при пересечении с третьей прямой внутренние односторонние углы ? и ?, сумма величин которых меньше двух прямых углов (т.е. меньше 180?; рис 1), то эти две прямые обязательно пересекаются, причём именно стой стороны от третьей прямой, по которую расположены углы ? и ? (составляющие вместе не менее 180?).

Рюкзак детский "Сова", 32х26х10 см.
Рюкзак детский. Размер: 32х26х10 см. Состав: текстиль, ПВХ, металл. Не предназначено для детей младше 3 лет.
319 руб
Раздел: Детские
Этикетка самоклеящаяся "Lomond", А4, белая.
Размер этикетки - 210х297 мм. 1 этикетка на листе формата А4. Плотность - 70 г/м2. Тип этикетки - матовая. Цвет - белый.
323 руб
Раздел: Бейджи, держатели, этикетки
Брелок "FIFA 2018. Забивака с двумя подвесками №2".
Брелок с символикой чемпионата мира FIFA 2018. Материал: металл.
491 руб
Раздел: Брелоки, магниты, сувениры
 Эйнштейн (Жизнь, Смерть, Бессмертие)

Неевклидова геометрия посягнула на соотношения, которые представлялись очевидными не только в том элементарном эмпирическом смысле, в каком говорили когда-то об "очевидной" неподвижности Земли. Теоремы евклидовой геометрии казались присущими разуму и очевидными логически. В. Ф. Каган говорил, что "легче было сдвинуть Землю, чем уменьшить сумму углов в треугольнике, свести параллельные к схождению и раздвинуть перпендикуляры к прямой - на расхождение" [1]. 1 Каган В. Ф. Речь на торжественном заседании Казанского университета. - В сб.: Столетие неевклидовой геометрии Лобачевского. Казань, 1927, с. 60-61. 314 Лобачевский и Риман говорили о реальности неевклидовых соотношений, но до Эйнштейна не было логически замкнутой теории, которая рассматривала бы эти соотношения в качестве определенных и бесспорных физических констатации. Когда Эйнштейн нашел для неевклидовых соотношений однозначный физический эквивалент, это изменило смысл понятия "преобразование картины мира". Такое преобразование означает теперь не только переход к иной кинематической схеме тел, движущихся в пространстве, но и переход к иной трактовке самого пространства

скачать реферат Философские аспекты теории относительности

Она отличается от них не только по содержа- нию, по физическому смыслу, по лежащему в ее основе представлению о мире.Общая теория относительности открыла собой новую полосу в истории науки еще и потому, что она изменила соотношение между геометрическими и собственно физическими построениями. Раньше, до Эйнштейна, эти построения не сливались в единую теорию. Под гео- метрией когда-то подразумевали совокупность раз навсегда данных абсолютно бесспорных и непоколебимых теорем, выводимых из аксиом и постулатов, сформулированных в древности Евклидом. Потом узнали о возможности иных, неевклидовых геометрий, допускающих неравенс- тво суммы углов треугольника двум прямым углам, пересечение пер- пендикуляров, восстановленных из двух точек на одной и той же прямой, расхождение перпендикуляров к одной и той же прямой и другие соотношения, противоречащие евклидовой геометрии. Уже Ло- бачевский, как мы знаем, предполагал, что физические процессы в пространстве могут придать ему неевклидовы геометрические свойс- тва. Эйнштейн отождествил тяготение, искривляющее мировые линии движущихся тел, с искривлением пространства-времени.

 Большая Советская Энциклопедия (АК)

Гауссом возможности построить непротиворечивым образом геометрию, исходя из систем аксиом, отличной от евклидовой. Это открытие разрушило убеждение в абсолютной («очевидной» или «априорной») истинности аксиом и основанных на них научных теорий. Теперь аксиомы стали пониматься просто как исходные положения данной теории, вопрос же об их истинности в том или ином смысле (и выбор в качестве аксиом) выходит за рамки аксиоматической теории как таковой и относится к её взаимоотношению с фактами, лежащими вне её. Появилось много (и притом различных) геометрических, арифметических и алгебраических теорий, которые строились средствами А. м. (работы Р. Дедекинда, Г. Грасмана и др.). Эта стадия развития А. м. завершилась созданием аксиоматических систем арифметики (Дж. Пеано, 1891), геометрии (Д. Гильберт, 1899), исчисления высказываний и предикатов (А. Н. Уайтхед и Б. Рассел, Англия, 1910) и аксиоматической теории множеств (Э. Цермело, 1908).   Гильбертовская аксиоматизация геометрии позволила Ф. Клейну и А. Пуанкаре доказать непротиворечивость геометрии Лобачевского относительно евклидовой геометрии посредством указания интерпретации понятий и предложений неевклидовой геометрии в терминах геометрии Евклида, или, как говорят, построения модели первой средствами второй

скачать реферат История геометрии

В дальнейшем этот плодотворный путь ведет от Якоби, через Римапа и Гессе к современной теории функций комплексного переменного; он дал те приложения геометрии к теории функций, которые Курант объединил под общим названием геометрической теории функций. Во всех областях математики влияние геометрии XIX в. очень сильно. В работах Минковского оно проникло даже в такую область, как теория чисел, являвшуюся цитаделью арифметических и алгебраических методов. Некоторые математики, в особенности Шаль, утверждали, что алгебраи-зация геометрии XVIII в. сменилась в XIX в. геометризацией алгебры, но геометризацией несравненно более совершенной, нежели это имело место в эллинскую эпоху. Вряд ли, однако, это так. Справедливее сказать, что доминирующая роль, которую аналитическая геометрия играла в период от Декарта до Монжа, уступила место тесному и глубокому объединению аналитических и геометрических методов. 5. Неевклидовая геометрия Но многовековые попытки доказательства пятого постулата Евклида привели в конце концов к появлению новой геометрии, отличающейся от евклидовой тем, что в ней V постулат не выполняется.

скачать реферат Волшебный мир Пуанкаре

Волшебный мир Пуанкаре Люди привыкли, что геометрия имеет дело с нашим реальным пространством и что пространство описывается евклидовой геометрией. Многие профессиональные математики выделяли геометрию среди остальных разделов математики, считая её подобно механике экспериментальной наукой, но они же понимали, что, во-первых, возможны логически стройные геометрические построения ,за которыми не стоит физическая реальность, во-вторых, не столь бесспорно, что в астрономических масштабах в нашем мире царит геометрия Евклида. Новый этап в развитии неевклидовой геометрии наступил, когда появились первые её модели. Одну из самых интересных моделей придумал Анри Пуанкаре, занимаясь чисто аналитическими вопросами. Рассказу о модели Пуанкаре и посвящена эта заметка. Рассмотрим круг. Пусть его населяют существа, которые твердо уверены, что их мир, то есть круг, неограничен. Этот круг устроен так, что когда они двигаются от центра круга к его границам, длина их шага = 1/( 2), где - число шагов, которые они уже сделали. Тогда нетрудно видеть, что человечек никогда не дойдет до границ круга.

скачать реферат Эволюция концепции доказательства

Противоречия получить не удалось, более того, семейство неевклидовых геометрий стало пополняться. Неевклидовы геометрии противоречили только обыденной интуиции и привычным наглядным представлениям, но были логически безупречны. Попутно выяснилось, наконец, что аксиома о параллельных не зависит от остальных аксиом Евклида. Гильберт предложил ставший общепринятым вариант аксиоматического построения евклидовой, а заодно и всех остальных геометрий. Этот успех еще раз напомнил о проблеме истинности теории в целом: если существуют разные геометрии и они непротиворечивы, то какая же из них "истинна"? Какая из них имеет место в реальной действительности и как это доказать? И что значит "истинная геометрия"? "Что есть истина?" Уверенность в том, что математика содержит только абсолютные истины, абсолютно доказанные на основе абсолютных аксиом, была подорвана навсегда. В обстановке замешательства, вызванного появлением неевклидовых геометрий, концепции доказательства удалось остаться вне подозрений. Новые проблемы Теория бесконечных множеств к началу ХХ века стала источником беспокойства: в ней обнаружились трудности и противоречия.

скачать реферат Единая теория поля

Таким образом, согласно теории тяготения Эйнштейна, истинное гравитационное поле является не чем иным, как проявлением искривления (отличия геометрии от евклидовой) четырёхмерного пространства-времени. Следует подчеркнуть, что создание теории тяготения Эйнштейна стало возможным только после открытия неевклидовой геометрии русским математиком Н. И. Лобачевским, венгерским математиком Я. Больяй, немецкими математиками К. Гауссом и Б. Риманом. В отсутствие тяготения движение тела по инерции в пространстве-времени специальной теории относительности изображается прямой линией, или, на математическом языке, экстремальной (геодезической) линией. Идея Эйнштейна, основанная на принципе эквивалентности и составляющая основу теории тяготения, заключается в том, что и в поле тяготения все тела движутся по геодезическим линиям в пространстве-времени, которое, однако, искривлено, и, следовательно, геодезические линии уже не прямые. Массы, создающие поле тяготения, искривляют пространство-время. Тела, которые движутся в искривленном пространстве-времени, и в этом случае движутся по одним и тем же геодезическим линиям независимо от массы или состава тела.

Чудо трусики для плавания, от 0 до 3-х лет, трехслойные, арт. 1433, для девочек.
Детские специальные трусики для плавания в бассейне и открытом водоеме. Плотно прилегают, отлично защищают! Изготовлены из хлопка, имеют
376 руб
Раздел: Многоразовые
Шторка антимоскитная ТД7-002.
Размеры: 100х220 см. Препятствует проникновению насекомых. Не нарушает естественную циркуляцию воздуха. Подходит для любых типов дверных
372 руб
Раздел: Сетки противомоскитные
Пеленки одноразовые впитывающие BabyMil "Эконом" (60х40 см, 30 штук).
Пеленка разработана специально для малышей. Изделие изготовлено из допущенных Роспотребнадзором материалов. Оно позволяет коже
350 руб
Раздел: Пелёнки
скачать реферат Вероятность и правдоподобные рассуждения

В связи с этим аналогия между неевклидовой геометрией и евклидовой, с одной стороны, и вероятностной логикой и классической двузначной, с другой, на которую указывает Рейхенбах, выглядит не очень убедительно (3, p. 397). Что касается характера самой вероятностной логики, то она выступает как метаязык по отношению к объектному языку. Если аксиомы частотной вероятности отображают весьма общие, формальные свойства массовых случайных событий и выражаются на предметном, или объектном, языке, то высказывания о них формулируются на языке более высокого уровня, т.е. метаязыке. С таким подходом мы встречаемся уже у Д.Буля, но Рейхенбах напрямую говорит об изоморфизме двух упомянутых языков. Логическая вероятность при таком подходе должна строиться на основе рассмотрения последовательности логических высказываний, подобно тому как объектная выступает как последовательность массовых событий. Однако практическое значение логической интерпретации вероятности, указывает Рейхенбах, возникает из ее применения к отдельному случаю, поскольку при таком применении вероятность выступает в функции заменителя истинностного значения (3, p. 380). Поскольку вероятностное высказывание об отдельном событии можно рассматривать как предположение, постольку Рейхенбах для определения истинностного значения такого предположения использует термин “вес” (3, p. 378). Таким образом, вероятностная логика при таком подходе превращается в логику взвешенных предположений.

скачать реферат Евклид и Лобачевский

(план урока по теме:”Евклидова и неевклидова геометрия”) Имя Евклида навсегда связано с одним из ответвлений математики, получившим название „евклидова геометрия". Столь прочная слава закрепилась за Евклидом заслуженно, благодаря его труду .Начала". В школах всего мира, долгие столетия геометрия преподавалась по .Началам" Евклида. В английских школах до сегодняшнего дня учебники геометрии по своей форме напоминают этот ученый трактат. В мировой литературе „Начала" принадлежат к числу самых популярных и распространенных математических трудов. Несмотря на столь огромную популярность Евклида как автора .Начал", сам он, его облик и жизненный путь известны очень мало. Нет исторически верных сведений о его жизни, неизвестны даже точные даты его рождения и смерти. По сведениям оставленным потомству Проклом (410—485), автором комментариев к „Началам", деятельность Евклида проходила во время правления Птолемея Сотера 1 (305—282 гг до н.э.). При этом царе, столица Египта Александрия стала центром научной и культурной жизни тогдашнего мира, и привлекала к себе многих выдающихся ученых со всех сторон, в частности, из Греции.

скачать реферат Концепция и принципы неклассического естествознания

В этой геометрии нет подобных и не конгруэнтных (неравных) треугольников; треугольники равны, если их углы равны, и т. д. Образ пространства Лобачевского можно условно выразить, представив себе гору неограниченной высоты с идеальными склонами по всей долготе и с гладкой вершиной. С этой вершины тело может соскользнуть вниз по бесконечному числу путей, и ни один из этих путей не пересечется, так что мы имеем в этом случае бесконечное число параллельных (непересекающихся) линий движения. Одно из важнейших следствий неевклидовой геометрии Лобачевского состоит также в том, что она способна описывать свойства физического пространства ничуть не в меньшей, если не в большей мере, и, возможно, даже более точно, чем евклидова геометрия. Например, много позднее в теории тяготения было показано, что если считать распределение масс во Вселенной равномерным, то физическое пространство такой Вселенной имеет геометрию Лобачевского, Необходимость и достаточность евклидовой геометрии как геометрии физического пространства ниоткуда не следует и никем никогда не была доказана; истинность той или иной геометрии может быть установлена только опытным путем (это ясно понимал сам Лобачевский, стремясь найти эмпирические основания своей геометрии).

скачать реферат Учение о параллельности. Открытие неевклидовой геометрии

Лежандр дал целых три доказательства V постулата, ошибочность которых быстро показали его современники. Последнее «доказательство» он опубликовал в 1823 году, за три года до первого доклада Лобачевского о новой геометрии. Открытие неевклидовой геометрии В первой половине XIX века по пути, проложенному Саккери, пошли сразу три математика: К.Ф. Гаусс, Н.И. Лобачевский и Я. Бойяи. Но цель у них была уже иная – не разоблачить неевклидову геометрию как невозможную, а, наоборот, построить альтернативную геометрию и выяснить её возможную роль в реальном мире. На тот момент это была совершенно еретическая идея; никто из учёных ранее не сомневался, что физическое пространство евклидово. Интересно, что Гаусса и Лобачевского учил в молодости один и тот же учитель – Мартин Бартельс (который, впрочем сам неевклидовой геометрией не занимался). Первым был Гаусс. Он не публиковал никаких работ на эту тему, но его черновые заметки и несколько писем однозначно подтверждают его глубокое понимание неевклидовой геометрии. Вот несколько характерных отрывков из писем Гаусса, где впервые в науке появляется термин «неевклидова геометрия»: Допущение, что сумма трёх углов треугольника меньше 180°, приводит к своеобразной, совершенно отличной от нашей (евклидовой) геометрии; эта геометрия совершенно последовательна, и я развил ее для себя совершенно удовлетворительно; я имею возможность решить в этой геометрии любую задачу, за исключением определения некоторой постоянной , значение которой a priori установлено быть не может.

скачать реферат Элементы методологии научного исследования

Бойаи построили геометрию, в которой в качестве постулата фигурировало отрицание пятого постулата Евклида, т.е. в качестве аксиомы было взято суждение о том, что через точку вне прямой можно провести бесконечно много прямых, параллельных данной прямой. Первоначально многие математики встретили неевклидовую геометрию в штыки из-за ее явного противоречия воспринимаемому физическому пространству. Однако, в 1950 г. Фр. Клейн нашел очень удачную интерпретацию (разъяснение) этой геометрии. Если под «плоскостью» понимать внутренность какого-то круга евклидовой плоскости, под «точкой» - точку этого круга, а под «прямой» - хорду его окружности, то внутри круга будут выполняться все аксиомы и теоремы геометрии Лобачевского-Бойаи. Из этих открытий были сделаны важные заключения о любой аксиоматической системе: аксиомы этой системы должны удовлетворять требованиям независимости, полноты, непротиворечивости и она не должна быть вырожденной. Требование независимости означает, что не одна из аксиом не должна выводиться в качестве теоремы из остальных. Полнота аксиоматики какой-то теории означает, что из аксиом по правилам логики должны выводиться все утверждения этой теории.

Шкатулка РТО, 31x31x19 см (арт. 3658-RT-70).
Шкатулки РТО — стильный аксессуар и для рукодельницы, и для филателиста, и для всех, кому приходится на время прятать, используемые в
1500 руб
Раздел: Шкатулки для рукоделия
Крем-гель для купания "Sanosan", 200 мл.
Разработан специально для детей с первых дней жизни. Содержит оливковое масло и молочный протеин, которые питают и смягчают кожу.
317 руб
Раздел: Гели, мыло
Гель для стирки детского белья "Cotico", 2 литра.
Гель для стирки детского белья предназначен для использования в стиральных машинах любого типа и ручной стирки. Подходит для белья грудных
314 руб
Раздел: Для стирки детских вещей
скачать реферат Философские аспекты теории относительности А. Эйнштейна

Исключением не был и Ньютон в создании своей механики. Лобачевский впервые предпринял попытку подвергнуть сомнению незыблемость учения Евклида, «он разработал первый вариант геометрии криволинейного пространства, в которой через точку на плоскости можно провести более одной прямой параллельной данной, сума углов треугольника меньше 2d и так далее; введя постулат о параллельности прямых, Лобачевский получил внутренне не противоречивую теорию». Геометрия Лобачевского была первой из множества разработанных позднее подобных теорий, в качестве примера можно привести сферическую геометрию Римана и геометрию Гаусса. Таким образом, стало ясно, что геометрия Евклида не является абсолютной истиной, и что при определенных обстоятельствах могут существовать другие геометрии отличные от Евклидовой. «Успехи естественных наук, приведших к открытию материи в состоянии поля, математических знаний, открывших неевклидовы геометрии, а также достижения философского материализма являлись фундаментом, на котором возникло диалектико-материалистическое учение об атрибутах материи.

скачать реферат Синергетический подход к анализу и управлению социальными системами

Литература последних лет содержит новые названия "отраслевых" направлений синергетики. Так, социальная синергетика исследует общие закономерности социальной самоорганизации. Бранский отмечает, что диалектическая концепция Гегеля и Маркса рассматривала развитие как процесс перехода от одного порядка к другому. Хаос при этом вообще не учитывался. Для синергетики же характерно представление о хаосе как о таком же закономерном этапе развития, что и порядок . Фракталами называются такие объекты, которые обладают свойством самоподобия. Это означает, что малый фрагмент структуры такого объекта подобен другому, более крупному фрагменту или даже структуре в целом (подобно тому, как каждая монада у Лейбница отражает свойства мира в целом) . Термин «фрактал» (лат. «frac us»-фрагментированный) принадлежит Бенуа Мандельброту, который предложил по сути новую, неевклидову геометрию. Евклид свёл природу к точке, одномерной линии, двумерной плоскости и объемному телу. В результате компьютерное изображение гор при помощи евклидовой геометрии представляет устрашающую задачу, которая требует множества строк программного кода и большого количества обращений к датчику случайных чисел.

скачать реферат Пятый постулат

В тайну этих неудач именно и проник Н. И. Лобачевский глубоко и окончательно: пятый постулат недоказуем и от -господствовавшего бо лее двух тысяч лет убеждения, чт( евклидова геометрия есть единствен ная мыслимая система геометриче ского познания мира, необходимо от казаться. 1-й ученик. Вечный. пятый. От Евклида И до этих вот снегов Постулат, как черный идо В жертву требует умов. 2-й ученик. «Постулат недоказуем!» Даже страшно произнесть. Ах, догматики! Грозу им Принесет такая весть. 3-й ученик. На уроках геометрии учитель говорил нам, что Лобачевский создал «неевклидову геометрию», в которой через точку можно провести более одной линии, не пересекающей данную прямую. Ведущий. Верно. Лобачевский заменил евклидов пятый постулат более общей аксиомой параллельности, сохранив прочие аксиомы и постулаты. Чтобы легче было понять смысл аксиом Лобачевского, возьмем прямую АВ и -вне ее точку С. Пусть САВ прямой. Построим луч СD, пересекающий прямую АВ в точке D, лежащей вправо от точки А, и вообразим, что он вращается против часовой стрелки.

скачать реферат Развитие наук о неорганической природе в ХVIII-ХIХ веках

Хотя Лобачевский и называл свою геометрию “воображаемой”, тем не менее считал, что вопрос о том, законам какой геометрии подчиняется реальное пространство – евклидовой или неевклидовой геометрии – должен решить опыт, и прежде всего астрономические наблюдения. Лобачевский полагал, что свойства пространства определяются свойствами материи и ее движения. Он считал вполне возможным, что “некоторые силы в природе следуют одной, другие своей особой Геометрии” (Лобачевский Н.И. Полное собрание сочинений. Т. 2, М - Л., 1949, с. 159)., а вопрос о выборе той или иной геометрии должен решать астрономический опыт. (Лобачевский Н.И. Полное собрание сочинений. Т. 2, М-Л., 1949, с. 147). Спустя почти 40 лет после работ Лобачевского, в 1868 г. была опубликована работа Римана “О гипотезах, лежащих в основании геометрии”. Риман, подобно Лобачевскому, опирался на идею о возможности геометрии, отличной от евклидовой, однако подошел к этому вопросу с несколько иных позиций. Риман вводит обобщенное понятие пространства как непрерывного многообразия -го порядка или совокупности однородных объектов – точек, определяемых системой чисел (х1, х2., х ).С точки зрения Римана, вопрос о том, является ли геометрия нашего физического пространства евклидовой, что соответствует его нулевой кривизне, или эта кривизна не равна нулю, должен решить эксперимент.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.