телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы
путь к просветлению

РАСПРОДАЖАТовары для дачи, сада и огорода -30% Электроника, оргтехника -30% Всё для хобби -30%

все разделыраздел:Математика

Итерационные методы решения систем линейных уравнений с неединственными коэффициентами

найти похожие
найти еще

Карабин, 6x60 мм.
Размеры: 6x60 мм. Материал: металл. Упаковка: блистер.
44 руб
Раздел: Карабины для ошейников и поводков
Фонарь садовый «Тюльпан».
Дачные фонари на солнечных батареях были сделаны с использованием технологии аккумулирования солнечной энергии. Уличные светильники для
106 руб
Раздел: Уличное освещение
Брелок LED "Лампочка" классическая.
Брелок работает в двух автоматических режимах и горит в разных цветовых гаммах. Материал: металл, акрил. Для работы нужны 3 батарейки
131 руб
Раздел: Металлические брелоки

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Большая Советская Энциклопедия (МА)

Численные методы решения систем линейных уравнений основываются обычно на преобразовании систем посредством цепочки левых умножений на подходящие вспомогательные М. с тем, чтобы перейти к легко решаемой системе. В качестве вспомогательных для вещественных М. употребляются элементарные М., М. вращения или М. отражения. Система с неособенной М. приводится либо к системе с треугольной М., либо с ортогональной. В теоретическом аспекте это равносильно представлению М. коэффициентов в виде произведения двух треугольных М. (при выполнении некоторых дополнительных условий) или в виде произведения треугольной на ортогональную (в том или другом порядке).   Для переопределённой системы умножением слева на цепочку М. вращения или отражения можно прийти к системе с треугольной М. порядка n , решение которой даёт обобщённое решение исходной системы.   Для решения проблемы собственных значений, раньше чем применять наиболее эффективные итерационные методы, целесообразно подобно преобразовать М. общего вида к М. типа Хессенберга или к трёх диагональной в случае симметрии

скачать реферат Методы решения систем линейных уравнений

Далее, когда нужно обнулить все коэффициенты переменной , кроме одного уравнения – этим особым уравнением опять выбирают то уравнение, у которого коэффициент при максимальный и т.д., пока не получим треугольную матрицу. Обратный ход происходит так же, как и в классическом методе Гаусса. 3. Оценка погрешности при решении системы линейных уравнений Для того, чтобы оценить погрешности вычислений решения системы линейных уравнений, нам нужно ввести понятия соответствующих норм матриц. Прежде всего, вспомним три наиболее часто употребляемые нормы для вектора : (11) (Евклидова норма)(12) (Чебышевская норма)(13) Для всякой нормы векторов можно ввести соответствующую норму матриц: (14) которая согласована с нормой векторов в том смысле, что (15) Можно показать, что для трёх приведённых выше случаев нормы матрицы задаются формулами: (16) (17) (18) Здесь - являются сингулярными числами матрицы , т.е. это положительные значения квадратных корней - матрицы (которая является положительно-определённой матрицей, при ). Для вещественных симметричных матриц - где - собственные числа матрицы . Абсолютная погрешность решения системы: (19) где - матрица системы, - матрица правых частей, оценивается нормой: (20) Относительная погрешность оценивается по формуле: (21) где . 4. Итерационные методы решения систем линейных уравнений Рассмотрим систему линейных уравнений, которая плохо решается методами Гаусса.

Шкатулка "Шиповник" (36x26x18 см).
Шкатулка очень удобна в использовании, и к тому же станет украшением вашего домашнего интерьера! Размер: 36x26x18 см. Оформление корпуса:
2706 руб
Раздел: Шкатулки для рукоделия
Френч-пресс, 1000 мл.
Френч-пресс Rosenberg изготовлен из высококачественной нержавеющей стали и термостойкого стекла. Удобная ненагревающаяся ручка.
503 руб
Раздел: Френч-прессы
Заварочный чайник эмалированный Mayer & Boch "Подсолнух", 1,5 л, с ситечком.
Заварочный эмалированный чайник. Материал корпуса: углеродистая сталь. Толщина стенок - 0,8 мм. Внешнее и внутреннее покрытие -
715 руб
Раздел: Чайники заварочные
 Большая Советская Энциклопедия (СО)

Их можно определить также как корни определителя матрицы А — lЕ (где Е — единичная матрица), т. е. корни уравнения   , (*)   называемого характеристическим уравнением матрицы. Эти числа совпадают для подобных матриц А и В–1 AB (где В — неособенная матрица) и характеризуют поэтому свойства линейного преобразования, не зависящие от выбора системы координат. Каждому корню li; уравнения (*) отвечает вектор xi ¹ 0 (собственный вектор) такой, что Axi = lixi. Если все С. з. различны, то множество собственных векторов можно выбрать за базис векторного пространства. В этом базисе линейное преобразование описывается диагональной матрицей   .   Каждую матрицу А с различными С. з. можно представить в виде С–1LС. Если А — самосопряжённая матрица, то её С. з. действительны, собственные векторы ортогональны, а матрицу С можно выбрать унитарной (см. Унитарная матрица). Модуль каждого С. з. унитарной матрицы равен 1. Сумма С. з. матрицы равна сумме её диагональных элементов, т. е. следу её матрицы. Знание С. з. матрицы играет важную роль в исследовании сходимости некоторых приближённых методов решения систем линейных уравнений. См. также Собственные функции

скачать реферат Экзаменационные билеты по численным методам за первый семестр 2001 года

Какую матрицу называют хранимой, воспроизводимой? 14. Опишите метод Гаусса решения систем линейных уравнений. 15. Представление исходной матрицы системы уравнений в виде произведения двух треугольных матриц. Модификация метода Гаусса. 16. Обусловленность систем линейных уравнений. 17. Итерационный метод решения систем линейных уравнений. Выбор начального приближения. 18. Приведение системы к виду, удобному для итераций. 19. Метод простой итерации. 20. Метод Зейделя. 21. Сформулируйте достаточные условия сходимости методов простой итерации и Зейделя. 22. В чем заключается метод верхней релаксации для ускорения сходимости итерационных методов? 23. Определение обратной матрицы А-1 к матрице А и определителя матрицы А численным методом. 24. Собственные значения и собственные векторы матрицы. Их геометрический смысл. Собственные значения симметричной матрицы. 25. Что называется характеристическим многочленом матрицы? 26. Чем отличается полная проблема собственных значений от частичной проблемы собственных значений? 27.

 История вычислительной техники в лицах

Разработка проекта машины МИР-1 отличалась огромным творческим накалом и интенсивным взаимодействием специалистов различного профиля,P вспоминает участник работ А.А. Летичевский.P Помню, как рождался входной язык машины (я в коллективе был самым языкатым и поэтому больше всего занимался разработкой языковых средств различного уровня). После интенсивных мозговых штурмов, вдохновляемых безграничной научной фантазией Виктора Михайловича, принимались очередные решения по структуре языка, которые затем проверялись на примерах конкретных задач. Первоначально язык развивался в направлении алгебраических спецификаций вычислительных схем. Юрий Владимирович Благовещенский предлагал все новые и новые вычислительные методы, а Алла Дородницына записывала соответствующие определения в языке. И каждый раз чего-нибудь недоставало. Например, допустимые схемы рекурсивных определений позволяли записать простую итерацию для решения систем линейных уравнений, но как быть с Зейделевской? Я, как теоретик, черпал идеи из известной в то время книги Петер Рекурсивные функции, и вскоре все стандартные типы рекурсий (возвратная, повторная и пр.) были включены в язык

скачать реферат Алгоритм компактного хранения и решения СЛАУ высокого порядка

Из -го уравнения системы (2)  определяем , из ()-го уравнения определяем  и т.д. до . Совокупность таких вычислений называют обратным ходом метода Гаусса. Реализация прямого метода Гаусса требует  арифметических операций, а обратного -  арифметических операций. 1.2. Итерационные методы решения СЛАУ Метод итераций (метод последовательных приближений). Приближенные методы решения систем линейных уравнений позволяют получать значения корней системы с заданной точностью в виде предела последовательности некоторых векторов. Процесс построения такой последовательности называется итерационным (повторяющимся). Эффективность применения приближенных методов зависят от выбора начального вектора и быстроты сходимости процесса. Рассмотрим метод итераций (метод  последовательных приближений). Пусть дана система линейных уравнений с неизвестными: Ах=b,     (14) Предполагая, что диагональные элементы aii  0 (i = 2, ., ), выразим xi через первое уравнение систем x2 - через второе уравнение и т. д. В результате получим систему, эквивалентную системе (14): Обозначим ; , где i == 1, 2, ., ; j == 1,2,., . Тогда система (15) запишется таким образом в матричной форме Решим систему (16) методом последовательных приближений.

скачать реферат Итерационные методы решения систем линейных алгебраических уравнений

Введение Данная курсовая работа включает в себя три итерационных метода решения систем линейных алгебраических уравнений (СЛАУ): Метод Якоби (метод итераций). Метод Холецкого. Метод верхней релаксации. Также данная курсовая работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования Borla d C Builder 6. Описание метода Метод решения задачи называют итерационным, если в результате получают бесконечную последовательность приближений к решению. Основное достоинство итерационных методов состоит в том, что точность искомого решения задается. Число итераций, которое необходимо выполнить для получения заданной точности , является основной оценкой качества метода. По этому числу проводится сравнение различных методов. Главным недостатком этих методов является то, что вопрос сходимости итерационного процесса требует отдельного исследования. Примером обычных итерационных методов служат: метод итераций (метод Якоби), метод Зейделя, метод верхних релаксаций.

скачать реферат Численные методы решения систем линейных уравнений

Курсовая работа по информатике на тему: «Численные методы решения систем линейных уравнений» Выполнил: студент 06–ИСТ, Фадеева Т.В. Проверил: Ловыгина М.Б. г. Павлово 2008 Содержание. Теоретическая часть Численные методы Матричный метод.6 Метод Метод Гаусса .12 Итерации для линейных систем . . .17 Итерация Якоби. . .18 Итерация Гаусса – Зейделя. . 20 Практическая часть 1) Матричный метод.22 2) Метод 3) Метод 4) Листинг программы. .28 Польза введения расчётов. .65 Теоретическая часть. Введение. Линейная алгебра – часть алгебры, изучающая векторные (линейные) пространства и их подпространства, линейные отображения (операторы), линейные, билинейные, и квадратичные функции на векторных пространствах. Линейная алгебра, численные методы – раздел вычислительной математики, посвященный математическому описанию и исследованию процессов численного решения задач линейной алгебры. Среди задач линейной алгебры наибольшее значение имеют две: решение системы линейных алгебраических уравнений определение собственных значений и собственных векторов матрицы.

скачать реферат Некоторые дополнительные вычислительные методы

Список литературы 27 1. Решение систем линейных уравненийСистемы линейных уравнений (СЛУ) имеют в вычислениях очень большое значение, так как к ним может быть приведено приближенное решение широкого круга задач. Так, основными источниками возникновения СЛУ являются теория электрических цепей, уравнения балансов и сохранения в механике, гидравлике и т.д. Существует несколько способов решения таких систем, которые в основном делятся на два типа: 1) точные методы, представляющие собой конечные алгоритмы для вычисления корней системы, 2) итерационные методы, позволяющие получать корни системы с заданной точностью путем сходящихся бесконечных процессов. Заметим, что даже результаты точных методов являются приближенными из-за неизбежных округлений. Для итерационных процессов также добавляется погрешность метода. Пример системы линейных уравнений: матрица коэффициентов системы; - вектор свободных членов. Схема ХалецкогоЗапишем систему линейных уравнений в матричном виде: – квадратная матрица порядка и - векторы-столбцы.

Набор из скатерти и салфеток "Botanica", 140x180/42x42 см.
В набор входит скатерть и 6 салфеток "Botanica" 140x180/42x42 см. Салфетки, изготовленные из экологически чистого материала,
961 руб
Раздел: Салфетки сервировочные из ткани
Звуковой планшет "Транспорт".
Звуковой планшет - прекрасный подарок ребёнку! Он удобен и прост в использовании, подходит как для самостоятельного изучения, так и с
313 руб
Раздел: Планшеты и компьютеры
Мыло-пенка "Pigeon" для младенцев (сменная упаковка), 400 мл.
Мыло-пенка "Pigeon" разработано специально для мытья малыша с рождения. Низкий уровень кислотности такой же, как у нежной кожи
494 руб
Раздел: Гели, мыло
скачать реферат Алгоритм компактного хранения и решения СЛАУ высокого порядка

Кроме того, существуют задачи с такой структурой матрицы, для которой прямые методы всегда предпочтительнее, чем итерационные. 1. Точные методы решения СЛАУ Рассмотрим ряд точных методов решения СЛАУ . Решение систем -линейных уравнении с -неизвестными по формулам Крамера. Пусть дана система линейных уравнений, в которой число уравнений равно числу неизвестных: Предположим, что определитель системы d не равен нулю. Если теперь заменить последовательно в определителе столбцы коэффициентов при неизвестных хj столбцом свободных членов bj, то получатся соответственно определителей d1,.,d . Теорема Крамера. Система линейных уравнений с неизвестными, определитель которой отличен от нуля, всегда совместна и имеет единственное решение, вычисляемое по формулам: x1=d1/d; x2=d2/d;.; x -1=d -1/d; x =d /d; Решение произвольных систем линейных уравнений. Пусть произвольная система линейных уравнений, где число уравнений системы не равно числу неизвестных. Предположим, что система (3) совместна и rmi {m, }, тогда в матрицах А и А найдутся r линейно независимых строк, а остальные m-r строк окажутся их линейными комбинациями.

скачать реферат Решение систем линейных алгебраических уравнений методом Гаусса и Зейделя

Содержание Введение 1 1. Теоретическая часть 1 1.1. Метод Гаусса 1 1.2. Метод Зейделя 4 1.3. Сравнение прямых и итерационных методов 6 2. Практическая часть 7 2.1 Программа решения системы линейных уравнений по методу Гаусса 7 2.2 Программа решения системы линейных уравнений по методу Зейделя 10 Введение Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности – нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма. Одна из трудностей практического решения систем большой размерности связанна с ограниченностью оперативной памяти ЭВМ. Хотя обьем оперативной памяти вновь создаваемых вычислительных машин растет очень быстро, тем не менее, еще быстрее возрастают потребности практики в решении задач все большей размерности.

скачать реферат Алгебра

Например, задача об отыскании точки пересечения двух линий свелась к решению системы уравнений, которым удовлетворяли точки этих линий. Такой метод решения геометрических задач получил название аналитической геометрии. Развитие буквенной символики позволило установить общие утверждения, касающиеся алгебраических уравнений: теорему Безу о делимости многочлена Р (х) на двучлен х - а, где а – корень этого многочлена; соотношения Виета между корнями уравнения и его коэффициентами; правила, позволяющие оценивать число действительных корней уравнения; общие методы исключения неизвестных из систем уравнений и т.д. Особенно далеко было продвинуто в XVIII в. решение систем линейных уравнений – для них были получены формулы, позволяющие выразить решения через коэффициенты и свободные члены. Дальнейшее изучение таких систем уравнений привело к созданию теории матриц и определителей. В конце XVIII в. было доказано, что любое алгебраическое уравнение с комплексными коэффициентами имеет хотя бы один комплексный корень. Это утверждение носит название основной теоремы алгебры. В течение двух с половиной столетий внимание алгебраистов было приковано к задаче о выводе формулы для решения общего уравнения 5-й степени.

скачать реферат Теория Матриц и Определителей

Следствие 5, как и линейное свойство, допускает более общую формулировку, которую я приведу для строк : если к элементам некоторой строки определителя прибавить соответствующие элементы строки, являющейся линейной комбинацией нескольких других строк этого определителя ( с какими угодно коэффициентами ), то величена определителя не изменится. Следствие 5 широко применяется при конкретном вычислении определителей. 3. Системы линейных уравнений. 3.1 Основные определения. . 3.2 Условие совместности систем линейных уравнений. . 3.3 Решение систем линейных уравнений методом Крамера. Известно, что используя матрицы мы можем решать различные системы уравнений, при чем эти системы могут быть какой угодно величены и иметь сколько угодно переменных. С помощью нескольких выводов и формул решение огромных систем уравнений становится довольно быстрым и более легким. В частности, я опишу методы Крамера и Гаусса. Наилегчайшим способом является метод Крамера ( для меня ), или как его еще называют – формула Крамера. Итак, допустим, что мы имеем какую-либо систему уравнений , в виде матрицы эту систему можно записать таким образом : A = , где ответы будут уравнений будут находится в последнем столбце.

скачать реферат Пособие MathCAD

Для этого необходимо: указать значение x данной точки (по оси Ох) и значение функции в этой точке (по оси Оy); дважды щелкнуть по графику и в окне форматирования во вкладке races для соответствующей линии выбрать тип графика — poi s, толщину линии — 2 или 3. Пример. На графике отмечена точка пересечения функции с осью Ох. Координата х этой точки была найдена в предыдущем примере: х = 2.742 (корень уравнения ) (рис. 3.4). Рис. 3.4. График функции с отмеченной точкой пересеченияВ окне форматирования графика во вкладке races для race2 изменены: тип графика — poi s, толщина линии — 3, цвет — черный. 7. Решение систем уравнений 7.1 Решение систем линейных уравнений Систему линейных уравнений можно решить матричным методом (или через обратную матрицу или используя функцию lsolve(A,B)) и с использованием двух функций Fi d и функции Mi err. Матричный метод Пример. Дана система уравнений: . Решение данной системы уравнений матричным методом представлено на рисунке 4.1. Рис. 4.1. Решение системы линейных уравнений матричным методомИспользование функции lsolve(A,B) Lsolve(A,B) — это встроенная функция, которая возвращает вектор Х для системы линейных уравнений при заданной матрице коэффициентов А и векторе свободных членов В. Пример. Дана система уравнений: .Способ решения данной системы с использованием функции lsolve(A,B) приведен на рисунке 4.2. Рис. 4.2. Решение системы линейных уравнений с использованием функции lsolveРешение системы линейных уравнений с помощью функции Fi d При данном методе уравнения вводятся без использования матриц, т.е. в «натуральном виде».

Головоломка "Кубик Рубика 2х2".
Кубик Рубика 2х2 от компании «Rubik's» - это упрощенная разновидность классической головоломки. Каждая грань кубика состоит не из 3,
562 руб
Раздел: Головоломки
Шторка антимоскитная "Кружево" с магнитными замками.
Размеры: 100х220 см. Препятствует проникновению насекомых. Не нарушает естественную циркуляцию воздуха. Подходит для любых типов дверных
424 руб
Раздел: Сетки противомоскитные
Игра "Зообильярд".
Главное достоинство этой игры в том, что в неё могут играть все от мала до велика. Причём не просто играть, а получать удовольствие от
1019 руб
Раздел: Игры на ловкость
скачать реферат Особенности вычисления определителя матрицы

Требуется вычислить её определитель. Воспользуемся идеями метода Гаусса решения систем линейных уравнений. Дана система:a11 x1 a12 x2 . a1 x = b1 a21 x1 a22 x2 . a2 x = b2 . a 1 x1 a 2 x2 . a x = b Выполним следующий алгоритм. На первом шаге найдём в первом столбце наибольший по модулю элемент, поставим уравнение с этим элементом на первую строчку (обменяв две соответствующие строки матрицы A и два соответствующих элемента вектора B), а затем будем отнимать это уравнение от всех остальных, чтобы в первом столбце все элементы (кроме первого) обратились в ноль. Например, при прибавлении ко второй строке будем домножать первую строку на -a21/a11, при добавлении к третьей - на -a31/a11, и т.д. На втором шаге найдём во втором столбце, начиная со второго элемента, наибольший по модулю элемент, поставим уравнение с этим элементом на вторую строчку, и будем отнимать это уравнение от всех остальных (в том числе и от первого), чтобы во втором столбце все элементы (кроме второго) обратились в ноль. Понятно, что эта операция никак не изменит первый столбец - ведь от каждой строки мы будем отнимать вторую строку, домноженную на некоторый коэффициент, а во второй строке в первом столбце стоит ноль. Т.е. на i-ом шаге найдём в i-ом столбце, начиная с i-го элемента, наибольший по модулю элемент, поставим уравнение с этим элементом на i-ю строчку, и будем отнимать это уравнение от всех остальных.

скачать реферат Алгебра матриц. Системы линейных уравнений

Вариант 6 Тема: Алгебра матриц Задание: Выполнить действия над матрицами. 1) С=3A-(A 2B)B 2) D=A2 B2 4E2 Тема: Обращение матриц Обратить матрицу по определению: Определитель матрицы: Далее находим матрицу алгебраических дополнений (союзную матрицу): Обратную матрицу находим: По определению обратной матрицы: Действительно: Тема: решение матричных уравнений Задание 1: Решить матричное уравнение: Решение. Нахождение столбца Х сводится к умножению матрицы на обратную: Матрица коэффициентов А: Найдем обратную матрицу A-1: Определитель матрицы A: Алгебраические дополнения: Транспонированная матрица алгебраических дополнений: Запишем выражение для обратной матрицы: Итак, выполняем умножение матриц и находим матрицу X: Ответ: Задание 2: Решить систему уравнений матричным способом Решение Матричная запись уравнения: Матрица коэффициентов А: Найдем обратную матрицу A-1: Определитель матрицы A: Алгебраические дополнения: Транспонированная матрица алгебраических дополнений (союзная матрица): Запишем выражение для обратной матрицы: Вычислим столбец неизвестных: Тема: Решение систем линейных уравнений методом Крамера и Гаусса Задание 1: Исследовать и решить систему по формулам Крамера: Найти решение системы уравнений по методу Крамера.

скачать реферат Метод ортогонализации и метод сопряженных градиентов

ВведениеК решению систем линейных алгебраических уравнений приводятся многие задачи численного анализа. Известное из курса высшей алгебры правило Крамера для решения систем линейных алгебраических уравнений практически невыгодно, так как требует слишком большого количества арифметических операций и записей. Поэтому было предложено много различных способов, более пригодных для практики. Используемые практически методы решения систем линейных алгебраических уравнений можно разделить на две большие группы: так называемые точные методы и методы последовательных приближений. Точные методы характеризуются тем, что с их помощью принципиально возможно, проделав конечное число операций, получить точные значения неизвестных. При этом, конечно, предполагается, что коэффициенты и правые части системы известны точно, а все вычисления производятся без округлений. Чаще всего они осуществляются в два этапа. На первом этапе преобразуют систему к тому или иному простому виду. На втором этапе решают упрощенную систему и получают значения неизвестных.

скачать реферат Система линейных уравнений

Содержание Введение 1. Основные понятия 2. Система линейных уравнений с неизвестными. Правило Крамера 3. Однородная система п линейных уравнений, с неизвестными 4. Метод Гаусса решения общей системы с линейных уравнений 5. Критерий совместности общей системы линейных уравнений Заключение Список литературы Введение Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений, т.е. системы m уравнений 1ой степени с неизвестными: a11x1 a1 x = b1; a21x1 a2 x = b2; am1x1 am x = bm. Здесь x1, , x – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1-й степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Способы решения систем линейных уравнений – очень интересная и важная тема.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.