телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы
путь к просветлению

РАСПРОДАЖАТовары для животных -5% Электроника, оргтехника -5% Разное -5%

все разделыраздел:Биология

Мембранные потенциалы

найти похожие
найти еще

Горшок торфяной для цветов.
Рекомендуются для выращивания крупной рассады различных овощных и цветочных, а также для укоренения саженцев декоративных, плодовых и
6 руб
Раздел: Горшки, ящики для рассады
Пакеты с замком "Extra зиплок" (гриппер), комплект 100 штук (150x200 мм).
Быстрозакрывающиеся пакеты с замком "зиплок" предназначены для упаковки мелких предметов, фотографий, медицинских препаратов и
126 руб
Раздел: Гермоупаковка
Ночник-проектор "Звездное небо и планеты", фиолетовый.
Оригинальный светильник - ночник - проектор. Корпус поворачивается от руки. Источник света: 1) Лампочка (от карманных фонариков) 2) Три
330 руб
Раздел: Ночники
Если из внеклеточной среды убрать a или заблокировать a - каналы, то ПД не возникает. Так с помощью местных анестетиков расстраивается механизм управления у ворот a - каналов. Следовые явления в процессе возбуждения клетки В конце ПД нередко наблюдается замедление реполяризации, что называют отрицательным следовым потенциалом. Затем может быть зарегистрирована гиперполяризация мембраны (характерно для нервных клеток) – положительный следовый потенциал. Вслед за ним может возникнуть частичная деполяризация клеточной мембраны – также отрицательный следовый потенциал. Следовая гиперполяризация обычно является результатом еще сохраняющейся повышенной проницаемости для К . Характерна для нейронов. Активационные ворота K - каналов еще не полностью закрыты, K продолжает выходить из клетки согласно концентрационному градиенту. a/K – насос непосредственно за фазы ПД не отвечает, хотя он работает непрерывно в покое и продолжает работать во время развития ПД. Возможно, a/K – насос способствует развитию следовой гиперполяризации. Длительная гиперполяризация хорошо выражена в тонких немиелинизированных нервных волокнах (болевых афферентах). Следовая деполяризация также характерна для нейронов. Возможно, она связана с кратковременным повышением проницаемости мембраны для a и входом его в клетку по градиентам. Исследования ионных токов Наиболее распространенный метод исследования ионных каналов – это метод фиксации напряжения (vol age - clamp). Мембранный потенциал с помощью подачи электрического напряжения изменяют и фиксируют на определенном уровне. Затем мембрану градуально деполяризуют, что ведет к открытию ионных каналов и возникновению ионных токов, которые могли бы деполяризовать клетку. Однако при этом пропускается электрический ток, равный по величине, но противоположный по знаку, поэтому трансмембранная разность потенциалов не изменяется. Это дает возможность получить величину ионного тока через мембрану. Количественное соотношение между ионными токами по отдельным каналам в покое и во время ПД можно выяснить с помощью метода локальной фиксации потенциала (pa ch clamp). К мембране подводят микроэлектрод – присоску (внутри него создается разрежение) и, если на этом участке оказывается канал, исследуют ионный ток через него. В остальном методика подобна предыдущей. Таким методом было установлено, что через a - каналы может проходить и К , но его ток в 10 – 12 раз меньше. a также может проходить через К - каналы в 100 раз менее интенсивно. Резерв в клетке ионов, обеспечивающих возникновение возбуждения, огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменяются. Клетка может возбуждаться до 5·105 раз без подзарядки, т. е. без работы a/K – насоса. Число импульсов, которое генерирует и проводит нервное волокно, зависит от его толщины, определяющей запас ионов. Если сила раздражителя, действующего на нервную ткань мала, деполяризация не достигает критического уровня, импульс не возникает. В этом случае ответ ткани на раздражение будет носить форму локального потенциала. Величина такого потенциала вариабельна, она может достигать 10 – 40 мВ. Локальными являются также возбуждающий и тормозной постсинаптические потенциалы, рецепторный и генераторный потенциалы.

В случае равновесия на клеточной мембране устанавливается равновесный калиевый потенциал. Равновесный потенциал для каждого иона можно рассчитать по формуле Нернста: Eio =R /ZF·l (i), где Eio - потенциал, создаваемый данным ионом; R – универсальная газовая постоянная; Т – абсолютная температура (273 37°С); Z – валентность иона; F – постоянная Фарадея (9,65·104); i - концентрация иона внутри клетки. При температуре 37°С равновесный потенциал для K равен -97мВ. Однако реальный ПП меньше – около -90 мВ. Это объясняется тем, что в формирование ПП свой вклад вносят и другие ионы. В целом ПП – это алгебраическая сумма равновесных потенциалов всех ионов, находящихся внутри и вне клетки, включающий также значения поверхностных зарядов самой клеточной мембраны. Вклад a и Cl- в создание ПП невелик, но, тем не менее, он имеет место. В покое вход a в клетку низкий (намного ниже, чем K ), но он уменьшает мембранный потенциал. Влияние Cl- противоположно, так как это анион. Отрицательный внутриклеточный заряд не позволяет большому количеству Cl- проникнуть в клетку, поэтому Cl- это в основном внеклеточный анион. Как внутри клетки, так и вне ее a и Cl- нейтрализуют друг друга, вследствие чего их совместное поступление в клетку не оказывает существенного влияния на величину ПП. Наружная и внутренняя стороны мембраны несут на себе собственные электрические заряды, преимущественно с отрицательным знаком. Это полярные составляющие мембранных молекул – гликолипидов, фосфолипидов, гликопротеинов. Ca2 , как внеклеточный катион, взаимодействует с наружными фиксированными отрицательными зарядами, а также с отрицательными карбоксильными группами интерстиция, нейтрализуя их, что приводит к увеличению и стабилизации ПП. Для создания и поддержания электрохимических градиентов необходима постоянная работа ионных насосов. Ионный насос – это транспортная система, обеспечивающая перенос иона вопреки электрохимическому градиенту, с непосредственными затратами энергии. Градиенты a и K поддерживаются с помощью a/K – насоса. Сопряженность транспорта a и K примерно в 2 раза уменьшает энергозатраты. В целом же траты энергии на активный транспорт огромны: лишь a/K – насос потребляет около 1/3 всей энергии, расходуемой организмом в покое. 1АТФ обеспечивает один цикл работы – перенос 3 a из клетки, и 2 K в клетку. Асимметричный перенос ионов способствует заодно формированию и электрического градиента (примерно 5 – 10мВ). Нормальная величина ПП является необходимым условием возникновения возбуждения клетки, т.е. распространения потенциала действия, инициирующего специфическую деятельность клетки. Потенциал действия (ПД) ПД – это электрофизиологический процесс, выражающийся в быстром колебании мембранного потенциала, вследствие специфического перемещения ионов и способный распространяться без декремента на большие расстояния. Амплитуда ПД колеблется в пределах 80 – 130 мВ, длительность пика ПД в нервном волокне – 0,5 – 1 мс. Амплитуда потенциала действия не зависит от силы раздражителя. ПД либо совсем не возникает, если раздражение подпороговое, либо достигает максимальной величины, если раздражение пороговое или сверхпороговое.

Выделение молекул медиатора пропорционально количеству поступившего туда Ca2 в 4-й степени, т. е. имеется усиление сигнала. Выделение медиатора происходит квантами, каждый из которых содержит до 10 тыс. молекул. После поступления в синаптическую щель молекулы медиатора диффундируют к постсинаптической мембране и вступают во взаимодействие с ее рецепторами. Скорость диффузии молекул медиатора позволяет им пройти расстояние синаптической щели в течение 0,1 – 0,2 мс. Длительность действия медиатора на рецепторы равна около 1 мс, что гораздо меньше его периода полураспада. Это значит, что медиатор удаляется из синаптической щели. Удаление происходит путем диффузии в окружающее межклеточное вещество и разрушения эстеразой. 2. Преобразование химического сигнала обратно в электрический. Действие молекул медиатора на рецепторы приводит к открытию ионных каналов. Открытое состояние сохраняется 1мс, в течение которого через него проходит около 500000 ионов. Ток a через канал превосходит ток К , т. к. транспорту К противостоит электрический градиент. Формируется деполяризация, называемая возбуждающим постсинаптическим потенциалом (ВПСП). Высокая возбудимость в синапсах может поддерживаться путем спонтанного выделения из пресинаптической мембраны 1 - 2 квантов медиатора во время между импульсами. Кроме того существует неквантовая утечка медиатора, которая, по предположениям, оказывает трофическое влияние. В нейронах ЦНС возникновение ВПСП связано также с транспортом Ca2 . Кроме быстрых a - потенциалов существуют медленные кальциевые. В телах некоторых нейронов ПД создается преимущественно за счет Ca2 , а в аксоне – главным образом за счет a . Таким образом видно, какое важное значение в организме играет неравномерное распределение ионов. Потенциальная энергия химических и электрических градиентов велика и используется организмом далеко не только для информационной связи между отдельными частями организма и внешней средой. Эта энергия может переводиться в энергию химических связей, как например в процессах фотосинтеза и внутриклеточного дыхания, может использоваться для транспорта через мембрану других веществ (как, например, при всасывании питательныъх веществ в кишечнике, реабсорбции веществ в канальцах нефрона), регуляции параметров внутренней среды и многих других процессах.

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

 Человеческий мозг. От аксона до нейрона.

Стимул, слишком слабый для того, чтобы вызвать возникновение импульса, называется «подпороговым». Действительно, можно зарегистрировать малые по амплитуде мембранные потенциалы, которые вызывают появление слабых трансмембранных токов, но эти токи быстро угасают, не формируя нервный импульс. (Если, однако, до того, как успеет угаснуть первый слабый стимул, на нервную клетку подействует второй слабый, подпороговый стимул, то их действие суммируется, и импульс может возникнуть.) Представляется, что малые токи не могут длительно существовать в нерве — сопротивление его мембраны слишком велико. С другой стороны, достаточно сильный стимул, способный инициировать импульс («пороговый стимул»), приводит к электрическим и химическим эффектам, которые, не угасая, регенерируют по всей длине нервного волокна. (Почему амплитуда потенциалов по мере прохождения волны деполяризации по нерву не угасает, неизвестно, но полагают, что в этом играют важную роль перехваты Ранвье.) Пороговый стимул вызывает максимальный ответ нерва. Более сильный стимул не может вызвать более сильного ответа

скачать реферат Математические модели естествознания

Суммарно затраты энергии не велики. Рассмотрим миелинизированный участок, ограниченный двумя перехватами. Пусть левый перехват генерирует спайк. Возмущение (положительное) по миелинизированному участку передается правому перехвату. Когда отклонение мембранного потенциала правого участка достигает порогового значения, он генерирует спайк. Этот импульс не может вызвать генерацию нового спайка левым перехватом Ранвье, поскольку тот находится в рефрактерном состоянии (в состоянии невосприимчивости). Однако, данный перехват по той же схеме возбуждает перехват, следующий за ним справа. По миелинизированному аксону, перескакивая от перехвата к перехвату, будет распространяться импульс. Процесс называется сальтаторным проведением возбуждения (sal are - прыгать). Оно обеспечивает скорость распространения импульсов в 20- 25 раз более высокую, чем в гигантских аксонах того же диаметра. Описанный процесс сальтаторного проведения импульсов легко формализуется. В простейшем случае это выглядит следующим образом. Пусть - мембранные потенциалы левого и правого перехватов Ранвье, а -потенциал миелинизированного участка (считаем его во всех точках участка одинаковым).

Карандаши цветные автоматические "Inspira", 12 цветов.
Карандаши цветные автоматические. В наборе: 12 цветов. Круглый корпус. Диаметр грифеля: 2 мм.
365 руб
Раздел: 7-12 цветов
Рюкзачок малый "Peppa Pig. Счастье".
Легкий и компактный дошкольный рюкзачок - это красивый и удобный аксессуар для вашего ребенка. В его внутреннем отделении на молнии легко
604 руб
Раздел: Детские
Шкатулка для рукоделия, 28x21x15 см, арт. 80888.
Такие шкатулки послужат оригинальным, а главное, практичным подарком, в котором замечательно сочетаются внешний вид и функциональность.
1618 руб
Раздел: Шкатулки для рукоделия
 Мозг (сборник)

Этот "потенциал покоя" создается двумя свойствами клеточной мембраны. Во-первых, мембрана активно переносит ионы, выводя из клетки положительно заряженные ионы натрия и пропуская внутрь положительно заряженные ионы калия, вследствие чего концентрации этих двух видов ионов внутри клетки и снаружи совершенно различны. Во-вторых, способность проникать через мембрану у натрия и калия также различна. Изменения разности потенциалов, которая создается таким образом между наружной и внутренней сторонами клетки в состоянии покоя, -это электрические сигналы нервов. Изменение трансмембранного напряжения на любом участке клетки или ее отростков быстро распространяется по мембране во всех направлениях, постепенно затухая; уже на расстоянии нескольких миллиметров сигнал вряд ли удается обнаружить. Это электрический сигнал первого рода, т.е. градуальный потенциал. Его основная функция состоит в передаче сигналов на очень короткие расстояния. Сигнал второго типа, потенциал действия, передает информацию на большие расстояния. Если мембрана деполяризована (ее потенциал снижен) до критического уровня - от уровня покоя, равного 70 мВ, до приблизительно 50 мВ, - то наступает внезапное, резкое изменение: на время снимаются существующие препятствия току ионов калия и натрия и возникает локальный поток ионов, достаточный для того, чтобы изменить знак мембранного потенциала, который становится положительным внутри и достигает 50 мВ, а затем полярность снова меняется и восстанавливается нормальный потенциал покоя

скачать реферат Патофизиология (Нарушение водно-солевого баланса)

В условиях гипоинсулинизма развивается осмотическая полиурия. Однако уровень глюкозы в крови остается высоким. Важно, что в данном случае состояние гипогидратации может возникать сразу и в клеточном, и в неклеточном секторах. Гипергидратация. Эта форма нарушения возникает вследствие либо избыточного поступления воды в организм, либо недостаточного ее выведения. В ряде случаев эти два фактора действуют одновременно. Изоосмолярную гипогидратацию - можно воспроизвести, вводя в организм избыточный объем физиологического раствора, например хлористого натрия. Развивающаяся при этом гипергидрия носит временный характер и обычно быстро устраняется (при условии нормальной работы системы регуляции водного обмена). Гипоосмолярная гипергидратация формируется одновременно во внеклеточном и клеточном секторах, т.е. относится к остальным формам дисгидрий. Внутреклеточная гипоосмолярная гипергидратация сопровождается грубыми нарушениями ионного и кислотно-основного баланса, мембранных потенциалов клеток. При водном отравлении наблюдается тошнота, многократная рвота, судороги возможно развитие комы. Гиперосмолярная гипергидратация - может возникнуть в случае вынужденного использования морской воды в качестве питьевой.

 Мозг (сборник)

В состоянии покоя, когда импульсы не передаются, каналы обоих типов закрыты, и ионный нанос поддерживает ионные градиенты, выкачивая ионы натрия в обмен на ионы калия. Внутренность аксона в норме имеет отрицательный потенциал в 70 мВ по отношению к наружному раствору. Если эта разность потенциалов уменьшается вследствие прихода нервного импульса, натриевый канал открывается и позволяет ионам натрия входить внутрь аксона. Мгновением позже натриевый канал закрывается, а открывается калиевый, позволяя ионам калия выходить из клетки. Последовательное открывание и закрывание каналов двух типов приводит к распространению нервного импульса; этот процесс представлен на следующей иллюстрации. Мембранные белки, которые служат каналами, существенны для многих сторон деятельности нейрона и в особенности для генерации нервного импульса и синаптической передачи. Чтобы представить значение каналов для электрической активности мозга, я коротко опишу механизм нервного импульса, а затем опять вернусь к более систематическому описанию свойств каналов

скачать реферат Физиология человека

Большое значение в деятельности нервной системы имеет другая особенность проведения возбуждения через синапсы — замедленное проведение. Затрата времени на процессы, происходящие от момента подхода нервного импульса к пресинаптической мембране до появления в постсинаптической мембране потенциалов, называется синаптической задержкой. В большинстве центральных нейронов она составляет около 0.3 мс. После этого требуется еще время на развитие возбуждающего постсинаптического потенциала (ВПСП) и потенциала действия. Весь процесс передачи нервного импульса (от потенциала действия одной клетки до потенциала действия следующей клетки) через один синапс занимает примерно 1.5 мс. При утомлении, охлаждении и ряде других воздействий длительность синаптической задержки возрастает. Если же для осуществления какой-либо реакции требуется участие большого числа нейронов (многих сотен и даже тысяч), то суммарная величина задержки проведения по нервным центрам может составить десятые доли секунды и даже целые секунды. При рефлекторной деятельности общее время от момента нонесения внешнего раздражения до появления ответной реакции организма—так называемое скрытое или латентное время рефлекса определяется в основном длительностью проведения через синапсы.

скачать реферат Физиология возбудимых тканей

Максимальная возбудимость клетки соответствует фазе ПП. Рассмотрим Схему соотношения ПД и возбудимости. При деполяризации мембраны возбудимость повышается (фаза латентного дополнения) (1). После достижения мембранным потенциалом критического уровня деполяризации происходит овершут. В этот момент возбудимость практически мгновенно падает до нуля. Это - фаза абсолютной рефрактерности (2). Ни один импульс, пришедший в эту фазу не способен возбудить клетку. По мере восстановления мембранного потенциала (реполяризации) восстанавливается и возбудимость (фаза относительной рефрактерности) (3). В эту фазу надпороговые раздражители способны возбудить клетку. Эта фаза обусловлена повышением проницаемости мембраны для ионов K , который выходит из цитоплазмы, снижая заряд мембраны внутри клетки. В фазу следовой деполяризации возбудимость несколько превышает нормальную - фаза экзальтации (4). Однако, поскольку K - каналы медленные, то калий выходит из клетки даже в несколько избыточном количестве, что ведёт к возникновению гиперполяризации.

скачать реферат Уравнение постоянного поля ионных токов

В нейронах взрослого животного экспрессия каналов CLC более выражена, и мембранная проводимость для хлора выше, поэтому накопление внутриклеточного хлора невозможно, и ЕСl равен мембранному потенциалу. В клетках центральной нервной системы до 10% проводимости мембраны при потенциале покоя обеспечивается за счет хлорных каналов.Изменения мембранного потенциалаРавновесный мембранный потенциал представляет собой тот фоновый уровень, на котором происходят все изменения мембранного потенциала. Как они происходят? Обычно кратковременные изменения мембранного потенциала (подобные тем, которые наблюдаются при взаимодействии нейронов между собой) происходят за счет временных изменений проницаемости мембраны. Как мы знаем из уравнения постоянного поля, увеличение натриевой проницаемости (также как и снижение калиевой) приводит к деполяризации, то есть к смещению мембранного потенциала в сторону натриевого равновесного потенциала. Напротив, увеличение калиевой проницаемости вызывает гиперполяризацию. Еше один важный для сигнальных процессов клетки ион - это кальций. Внутриклеточная концентрация кальция очень низка, а ЕСа в большинстве клеток превышает 150 мВ.

скачать реферат Избирательное повреждение интерстициальных клеток Кэйждела

Эти наблюдения указывают на то, что эффекты МС и света на механизм генерации активности медленных волн не зависят от мембранного потенциала. В противоположность этому изменения активности медленных волн, вызванные повышением внеклеточной концентрации калия зависят исключительно  от деполяризации, как только реполяризация мышечных лоскутов полностью обратит эффекты. Кроме этого, упразднение активности медленных волн может быть обнаружено при деполяризации лишь потенциалом 8-12 мВ (медленные волны упраздняются при величинах мембранных потенциалов –60,4 мВ) .              Скорость, с которой упразднялись медленные волны варьировала непосредственно с интенсивностью света. При иллюминации с максимальной интенсивностью, медленные волны исчезают в пределах 0,8-3 минут. Уменьшение интенсивности света повышает продолжительность промежутка исчезновения медленных волн до 3-12 минут.             Время необходимое для исчезновения медленных волн также зависит от длительности инкубации в МС. Когда препараты ИКК-ЦМ инкубировались в МС в течении 7 минут с последующим периодом прмывки 5 минут, иллюминация с максимальной интенсивностью устраняла медленные волны через 4-8 минут ( =5).

Термомозаика "Подводный мир".
Заботитесь о том, чтобы игры малыша не только развлекали его, но и приносили пользу? С термомозаикой "Подводный мир" Ваш ребенок
306 руб
Раздел: Термомозаика
Набор детской складной мебели "Веселая азбука".
Детский комплект складной мебели подходит для кормления, игр и обучения. Поверхность столешницы ламинированная с нанесением ярких
1682 руб
Раздел: Наборы детской мебели
Патроны для рапидографа, черные.
Для копировальной бумаги, веленевой чертежной бумаги и чертежных досок. В комплекте: 3 штуки. Цвет: черный.
305 руб
Раздел: Циркули, чертежные инструменты
скачать реферат Водно-электролитный баланс, кислотно-щелочное состояние организма

В ряде случаев эти два фактора действуют одновременно. Изоосмолярную гипогидратацию - можно воспроизвести, вводя в организм избыточный объем физиологического раствора, например хлористого натрия. Развивающаяся при этом гипергидрия носит временный характер и обычно быстро устраняется (при условии нормальной работы системы регуляции водного обмена). Гипоосмолярная гипергидратация формируется одновременно во внеклеточном и клеточном секторах, т.е. относится к остальным формам дисгидрий. Внутриклеточная гипоосмолярная гипергидратация сопровождается грубыми нарушениями ионного и кислотно-основного баланса, мембранных потенциалов клеток. При водном отравлении наблюдается тошнота, многократная рвота, судороги возможно развитие комы. Гиперосмолярная гипергидратация - может возникнуть в случае вынужденного использования морской воды в качестве питьевой. Быстрое возрастание уровня электролитов во внеклеточном пространстве приводит к острой гиперосмии, поскольку плазмолемма не пропускает избытка ионов в клетку. Однако она не может удержать воду, и часть клеточной воды перемещается в интерстициальное пространство. В результате внеклеточная гипергидратация нарастает, хотя степень гиперосмии снижается.

скачать реферат Лекции по физиологии ЦНС

Это приводит к тому, что на внутренней поверхности мембраны накапливаются положительные заряды, а на наружной – отрицательные заряды. Такое перераспределение зарядов называется деполяризацией. В этом состоянии клеточная мембрана существует недолго (0,1-5 м.с.). Для того, чтобы клетка опять стала способной к возбуждению, её мембрана должна реполяризироваться, т.е. вернуться в состояние потенциала покоя. Для возвращения клетки к мембранному потенциалу, необходимо «откачать» катионы натрия и калия против градиента концентрации. Для выполнения такой работы необходима энергия, которая концентрируется в АТФ. Такую работу выполняет натриево-каливый насос. Перемещение ионов натрия и калия обеспечивается специальными ферментами, которые активируются с помощью энергии АТФ (рис.). Фермент х способен к катионом калия, калия при этом образует комплекс Kx, который распадается и «продвигает» катионы калия внутрь клетки. Фермент x снова активируется, при этом меняется его конформация (структура) и он приобретает сродство с ионом натрия. Связанный с ионом натрия, фермент «выталкивается» за пределы клетки, таким образом, натриево-каливый насос восстанавливает исходное состояние концентрации катионов натрия и калия, т.е. восстанавливается мембранный потенциал.

скачать реферат Мембрана клетки

Чем можно объяснить отклонение экспериментальной кривой от уравнения Нернста? Оказывается, для этого достаточно снять ограничение с модели, состоящее в том, что мембрана непроницаема для ионов натрия. Мембрана реальной клетки действительно обладает натриевой проницаемостью, которая составляет от 1 до 10 % калиевой. Для рассмотрения роли натриевой проницаемости обратимся к модели идеальной клетки и временно исключим из поля зрения перемещение ионов хлора. Мембранный потенциал равен калиевому равновесному потенциалу, поэтому перемещение суммарного заряда через мембрану отсутствует, клетка находится в покое. Если теперь ввести в модель натриевую проницаемость, то натрий будет стремиться войти в клетку благодаря как своему концентрационному градиенту, так и мембранному потенциалу. По мере входа натрия на внутренней поверхности мембраны накапливается положительный заряд и мембрана деполяризуется. В результате ионы калия выходят из равновесия и начинают покидать клетку. С увеличением деполяризации мембраны движущая сила для входа натрия снижается, в то время как движущая сила для выхода калия возрастает. Процесс продолжается до тех пор, пока оба ионных потока не уравновесят друг друга.

скачать реферат Передача информации в нервной системе

Момент прокалывания пипеткой клеточной мембраны, приводящий к проникновению ее в клеточную цитоплазму, проявляется мгновенным появлением потенциала, соответствующего мембранному потенциалу покоя. При удачном проникновении в клетку мембрана обхватывает внешнюю поверхность пипетки, благодаря чему цитоплазма остается изолированной от внеклеточной жидкости. В начале 1970-х годов, используя нервно-мышечный синапс лягушки, Катц и Миледи предприняли оригинальные эксперименты, в которых метод внутриклеточной микроэлектродной регистрации использовался для изучения характеристик «шумов», продуцируемых медиатором ацетилхолином (АХ). В таком синапсе АХ, освобождаюшийся из моторного нервного окончания, открывает хемовозбудимые ионные каналы постсинаптической мембраны. Вход катионов в волокно через открытые ионные каналы вызывает деполяризацию мембраны. Когда Катц и Миледи локально апплицировали экзогенный АХ на область синапса, они обнаружили, что вызванная деполяризация сопровождалась электрическим «шумом». Во время стабильной деполяризации быстрые колебания потенциала были гораздо больше колебаний изолинии в покое. Они предположили, что возрастание электрического шума в присутствии АХ было связано с хаотичным открытием и закрытием АХ-активируемых ионных каналов.

скачать реферат Элементы физиологии клетки

Величина потенциала покоя описывается с известным приближением уравнением постоянного поля, предложенным Ходжкиным, Гольдманом и Кацем. Vм=R /zFl {(pki pCl i)} Не следует путать понятия мембранный потенциал, равновесный потенциал и потенциал покоя. Мембранный потенциал задается суммой действующих по обе стороны мембраны зарядов, определяющей способность определенных ионов проникать через ионные каналы. Равновесный потенциал – это такой потенциал плазмолеммы клетки, при котором суммарный ток определенного иона через мембрану равен нулю, несмотря на возможность отдельных ионов проникать через открытые каналы в обмен на такие же ионы, следующие в противоположном направлении. Определяется уравнением Нернста. Равновесный потенциал для иона калияЕк=R /ZF l (i) Источником электромагнитной энергии в любой клетке служит концентрационный элемент, образованный растворами солей, которые неравновесно распределены между цитоплазмой и межклетогной жидкостью, разделенными плазматической мембраной, обладающей неодинаковой проницаемостью для катионов и анионов, на которые диссоциируют эти соли (определение В.О.Самойлова) С другой стороны, сравнение ПП и равновесного потенциала для конкретного иона позволяет понять и предсказать, куда будет перемещаться этот ион при данном ПП и его изменении (конкретном мембранном потенциале).

Набор настольный Attache "JC805", черный, вращающийся.
Набор офисный настольный. Сделан из пластика. Вращающаяся основа набора. Комплектация: ножницы, нож канцелярский, карандаш с ластиком - 2
333 руб
Раздел: Наборы настольные
Плёнка самоклеящаяся для рисования и письма мелом, темно-зеленая.
Пленка гибкая самоклеящаяся для рисования и письма мелом. В наборе: 3 мелка. Цвет: темно-зеленая. Размер пленки: 45х200 см. Клеится быстро
313 руб
Раздел: Доски для мела
Спиннер трехлучевой "Элит", перламутровый (в железной квадратной коробке).
Компактная стильная игрушка для взрослых и детей, предназначенная для вращения на пальцах. Состоит из подшипников, благодаря которым
465 руб
Раздел: Спиннеры
скачать реферат Ионные механизмы потенциала покоя

Образуются два слоя ионов - катионов снаружи и анионов внутри клетки, которые удерживаются у мембраны благодаря взаимному притяжению. Таким образом, мембрана играет роль электрической емкости, разделяющей и запасающей заряд. Вышесказанное не означает, что ионы калия и хлора прикованы к поверхностям мембраны. Отдельные ионы свободно обмениваются с ионами внутри - или внеклеточного раствора. Тем не менее, заряд, накопленный на мембране, остается неизменным, а растворы - нейтральными. Интересным представляется вопрос, какую долю от общего количества ионов в клетке составляют ионы, накапливающиеся на мембране. Доля их весьма незначительна. Если предположить, что диаметр клетки составляет 25 мкм, то при концентрации 120 ммоль общее количество катионов (а следовательно, и анионов) получится 4 1012. При мембранном потенциале - 85 мВ величина заряда, разделенного мембраной, составляет приблизительно 5 1011 одновалентных ионов на см2. При площади поверхности клетки 8 10-5 см2 получается, что на внутренней поверхности мембраны накапливается около 4 107 отрицательных ионов, или одна стотысячная часть общего числа ионов во внутриклеточном растворе.

скачать реферат Противосудорожные препараты

Отмечают возможность снижения под влиянием этих препаратов возбудимости нейронов эпилептического очага. В последнее время много внимания уделяется изучению роли нейромедиаторов в патогенезе эпилепсии. Считают, что сверхчувствительность нейронов и нестабильность мембранных потенциалов, приводящие к спонтанным разрядам, могут быть обусловлены повышением концентрации центральных стимулирующих нейромедиаторов или уменьшением содержания тормозящих нейромедиаторов. В связи с этим изучается вопрос о роли этих медиаторов в механизме действия противоэпилептических средств Специальное внимание уделяется при этом у-аминомасляной кислоте (ГАМК), являющейся главным тормозным медиатором в ЦНС . Фенобарбитал Эффективность фенобарбитала связана, по-видимому, с его угнетающим влиянием на возбудимость нейронов эпилептогенного очага, а также на распространение нервных импульсов. При использовании фенобарбитала может наблюдаться седативное и снотворное действие. Следует учитывать, что у фенобарбитала выражена способность к кумуляции.

скачать реферат Физиология

В тысячные доли секунды он открывает (активирует) и закрывает (инактивирует) канал и таким образом регулирует скорость передвижения ионов по нему и поступление их в цитоплазму. Воротный механизм высокочувствителен к различным химическим веществам, в том числе ферментам ядам и некоторым лекарственным средствам. Они специфически влияют на работу ворот, ускоряя или замедляя ее, что особенно важно при направленном транспорте лекарственных средств с использованием естественных ионных каналов. Сенсор напряжения ионов в мембране представлен белковой молекулой, расположенной в самой мембране и способной реагировать на изменение мембранного потенциала. Селективный фильтр находится в самом узком месте канала. Он определяет однонаправленное движение ионов через пору и ее избирательную проницаемость. В развитии возбуждения выделяют 4 этапа: 1) предшествующее возбуждению состояние покоя (статическая поляризация); 2) деполяризацию; 3) реполяризацию и 4) гиперполяризацию. Статическая поляризация — наличие постоянной разности потенциалов между наружной и внутренней поверхностями клеточной мембраны. В состоянии покоя поверхность клетки всегда электроположительна по отношению к цитоплазме, т. е. поляризована. Эта разность потенциалов, равная ~60 мВ, называется потенциалом покоя, или мембранным потенциалом (МП).

скачать реферат Дифференцировка эмбриональных клеток

Ооцит и яйцо – организованные системы, с определённо выраженной полярностью, с определённым расположением клеточных структур. Уже в ооцитах находятся разнообразные вещества и структуры, дающие своеобразную реакцию на кислые и основные красители, в зависимости от их рН. Это означает, что различные части клетки могут иметь те или инные положительные или отрицательные заряды. В целой клетке поверхность её, как правило, заряжена отрицательно, а поверхность ядра и хромосом – положительно. При созревании ооцита создаётся соответственно его строению электрическое силовое поле, «закрепляющее» это строение. Под влиянием силового поля в клетке должны возникать определённые, объясняющиеся разностью потенциалов катафорезные точки перемещения веществ. При активации яйца сперматозоидом происходит изменение дыхания, иногда резкое изменение рН, изменение проницаемости мембран и передвижения веществ. По Кольцову, эти явления обусловлены, очевидно, напряжениями перезаряжающихся силовых полей, разностью потенциалов. Таким образом, начинающийся развиваться зародыш – это силовое поле.

телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.