телефон 978-63-62
978 63 62
zadachi.org.ru рефераты курсовые дипломы контрольные сочинения доклады
zadachi.org.ru
Сочинения Доклады Контрольные
Рефераты Курсовые Дипломы
путь к просветлению

РАСПРОДАЖАТовары для спорта, туризма и активного отдыха -30% Товары для детей -30% Разное -30%

Манипулирование с целыми числами произвольной длины

Молочный гриб необходим в каждом доме как источник здоровья и красоты
Молочный гриб необходим в каждом доме как источник здоровья и красоты + книга в подарок

поискв заголовках в тексте в маркете

Случайность в арифметике

Это исследование демонстрирует, говоря словами Эйнштейна, что Бог порой использует целые числа для игры в кости. Полученный результат, входящий составной частью в то, что было названо алгоритмической теорией информации, не является причиной для пессимизма; он не вносит в математику анархию. (В самом деле, большинство математиков продолжают работать над своими проблемами, как и раньше.) Он означает лишь, что в некоторых ситуациях должны применяться математические законы особого рода — статистические. Подобно тому как физика не в состоянии предсказать, в какой именно момент распадётся данный атом радиоактивного вещества, математика порой бессильна дать ответ на некоторые вопросы. Однако физики могут надёжно предсказать средние значения физических величин, отнесённые к большому количеству атомов. Математики в некоторых случаях должны, вероятно, ограничиваться таким же подходом. Моя работа служит естественным продолжением работы Тьюринга, однако если Тьюринг анализировал, остановится или нет произвольная программа, я рассматриваю вероятность того, что универсальный компьютер прекратит работу, если его программа выбрана совершенно случайно.

Математика (билеты)

Математика (билеты) (шпаргалка) Билет№1 1)Функция y=F(x) называется периодической, если существует такое число Т, не равное нулю, что для любых значений аргумента из области определения функции выполняются  равенства f(x- )=f(x)=f(x ). Число Т называется периодом функции. Например, y=si x – периодическая функция (синусоиду нарисуешь сам (а)) Периодом функции являются любые числа вида =2PR, где R –целое, кроме 0. Наименьшим положительным периодом является число =2P. Для построения графика периодической функции достаточно построить часть графика на одном из промежутков длинной Т, а затем выполнить параллельный перенос этой части графика вдоль оси абсцисс на -Т, -2Т, -3Т, 2)Степенью числа а, большего нуля, с рациональным показателем r=m/ (m-целое число; -натуральное, больше 1) называется число SQRa^m, т.е. a^m/ = SQRa^m. Степень числа 0 определена только для положительных показателей; 0^r=0 для любого r>0. Свойства степеней с рациональным показателем Для любых рациональных чисел r иs и любых положительных a и b справедливы следующие свойства. 1) Произведение степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным сумме показателей множителей: a^r a^s = a^r s. 2) Частное степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным разности показателей делимого и делителя: a^r : a^s = a^r-s. 3) При возведении степени в степень основание оставляют прежним, а показатели перемножают: (a^r)^s = a^rs   4) Степень произведения равна произведению степеней: (ab)^r = a^r b^r.   5) Степень частного равна частному степеней (a/b)^r = a^r / b^r.   6) Пусть r рациональное число и число a больше нуля, но меньше числа b, 01 возрастает на всей области определения.

Золотое сечение в природе и искусстве

Четвертая региональная научная и инженерная выставка «Будущее Севера»Золотое сечение в природе и искусстве Автор: Седлинский Игорь Николаевич Гимназия № 1 г. Апатиты, Мурманская обл.Научный руководитель: Щукина Любовь НиколаевнаМурманск 2002 годГеометрия владеет двумя сокровищами: одно из них – теорема Пифагора, другое- деление отрезка в среднем и крайнем от- ношении. И. Кеплер Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Самым известным из всех иррациональных чисел, то есть чисел, десятичные разложения которых бесконечны и непериодичны, следует считать число ( – отношение длины окружности к ее диаметру.

Множина комплексних чисел

Наряду с натуральными числами применяли дроби - числа, составленные из целого числа долей единицы. В практических расчетах дроби применялись за две тысячи лет до н. э. в древнем Египте и древнем Вавилоне. Долгое время полагали, что результат измерения всегда выражается или в виде натурального числа, или в виде отношения таких чисел, то есть дроби. Древнегреческий философ и математик Пифагор учил, что “ элементы чисел являются элементами всех вещей и весь мир в целом является гармонией и числом. Сильнейший удар по этому взгляду был нанесен открытием, сделанным одним из пифагорейцев. Он доказал, что диагональ квадрата несоизмерима со стороной. Отсюда следует, что натуральных чисел и дробей недостаточно, для того чтобы выразить длину диагонали квадрата со стороной 1. Есть основание утверждать, что именно с этого открытия начинается эра теоретической математики: открыть существование несоизмеримых величин с помощью опыта, не прибегая к абстрактному рассуждению, было невозможно. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел - это было сделано китайскими математиками за два века до н. э. Отрицательные числа применяли в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом.

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЯТИТОЧЕЧНЫМ МЕТОДОМ АДАМСА – БАШФОРТА

Решение такого рода задач связано с необходимостью использования численных методов , таких как : метод прогноза и коррекции , метод Адамса- Башфорта , метод Эйлера , метод Рунге-Кута , и др. При этом , стоит задача решения системы линейных дифференциальных уравнений первого порядка одним из методов интегрирования , на произвольном промежутке времени . Одним из оптимальных методов дающих высокую точность результатов – является пяти точечный метод прогноза и коррекции Адамса-Башфорта . Для повышения точности метода используется трех точечный метод прогноза и коррекции с автоматическим выбором шага , что приводит к универсальному методу интегрирования систем дифференциальных уравнений произвольного вида на любом промежутке интегрирования . Разработка программных средств реализующих расчет точного прогноза протекания процессов , является важнейшей вспомогательной научно- технической задачей . Целью данной курсовой работы является разработка алгоритма решения систем линейных дифференциальных уравнений первого порядка пяти точечным методом прогноза и коррекции Адамса-Башфорта . 1. ПОСТАНОВКА ЗАДАЧИ Рассмотрим произвольную систему линейных дифференциальных уравнений первого порядка : (1.2) где А заданная матрица размером x . - вектор с координатами , который подлежит определению ; – произвольное целое число ; - заданные вектора правых частей с координатами .

страницы 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Развитие произвольной памяти у младших школьников. Программа, разработки занятий. Лапп Е.А.
Пособие предлагает программу коррекционной помощи при недостатках развития произвольной памяти младших школьников и подробные разработки
74 руб
Раздел: Методическая литература
Я приду плюнуть на ваши могилы. Виан Борис
Знаменитый французский писатель Борис Виан был известен также как изобретатель, автор песен и джазовый исполнитель, журналист, сценарист,
118 руб
Раздел: Современная зарубежная литература
Биоритмология. Уринотерапия. Малахов Г.П.
Состоящая из двух частей, посвященных вопросам биоритмологии и уринотерапии, книга Геннадия Малахова будет полезна каждому, кто заботится
54 руб
Раздел: Нетрадиционные и народные практики лечения
телефон 978-63-62978 63 62

Сайт zadachi.org.ru это сборник рефератов предназначен для студентов учебных заведений и школьников.